Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids

We analyse the IllustrisTNG simulations to study the mass, volume fraction, and phase distribution of gaseous baryons embedded in the knots, filaments, sheets, and voids of the Cosmic Web from redshift z = 8 to redshift z = 0. We find that filaments host more star-forming gas than knots, and that filaments also have a higher relative mass fraction of gas in this phase than knots. We also show that the cool, diffuse intergalactic medium [IGM; $T\lt 10^5 \, {\rm K}$, $n_{\rm H}\lt 10^{-4}(1+z) \, {\rm cm^{-3}}$] and the warm-hot intergalactic medium [WHIM; $10^5 \lt T\lt 10^7 \, {\rm K}$, $n_{\rm H} \lt 10^{-4}(1+z)\, {\rm cm^{-3}}$] constitute ${\sim } 39$ and ${\sim } 46{{\ \rm per\ cent}}$ of the baryons at redshift z = 0, respectively. Our results indicate that the WHIM may constitute the largest reservoir of missing baryons at redshift z = 0. Using our Cosmic Web classification, we predict the WHIM to be the dominant baryon mass contribution in filaments and knots at redshift z = 0, but not in sheets and voids where the cool, diffuse IGM dominates. We also characterize the evolution of WHIM and IGM from redshift z = 4 to redshift z = 0, and find that the mass fraction of WHIM in filaments and knots evolves only by a factor of ∼2 from redshift z = 0 to 1, but declines faster at higher redshift. The WHIM only occupies $4\!-\!11{{\ \rm per\ cent}}$ of the volume at redshift 0 ≤ z ≤ 1. We predict the existence of a significant number of currently undetected O vii and Ne ix absorption systems in cosmic filaments, which could be detected by future X-ray telescopes like Athena.

[1]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[2]  G. Zhu,et al.  Extreme Circumgalactic H i and C iii Absorption around the Most Massive, Quenched Galaxies , 2018, The Astrophysical Journal.

[3]  C. Pichon,et al.  Galaxy orientation with the cosmic web across cosmic time , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  Ny,et al.  Observations of the missing baryons in the warm–hot intergalactic medium , 2018, Nature.

[5]  M. Vogelsberger,et al.  Galaxy mergers moulding the circum-galactic medium – I. The impact of a major merger , 2018, 1801.06183.

[6]  J. Bregman,et al.  The Mass and Absorption Columns of Galactic Gaseous Halos , 2018, 1801.05833.

[7]  S. Borgani,et al.  The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations , 2018, 1801.05425.

[8]  L. Kewley,et al.  Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations , 2018, 1801.03500.

[9]  G. Kauffmann,et al.  The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG , 2017, 1712.00016.

[10]  Annalisa Pillepich,et al.  Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation , 2017, 1711.11039.

[11]  J. Moustakas,et al.  Galaxies Probing Galaxies in PRIMUS. I. Sample, Spectroscopy, and Characteristics of the Mg II–absorbing Circumgalactic Medium , 2017, 1711.08807.

[12]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  David Schlegel,et al.  First Data Release of the COSMOS Lyα Mapping and Tomography Observations: 3D Lyα Forest Tomography at 2.05 < z < 2.55 , 2017, The Astrophysical Journal Supplement Series.

[14]  S. Arnouts,et al.  Galaxy evolution in the metric of the cosmic web , 2017, 1710.02676.

[15]  J. Bregman,et al.  The Properties of the Galactic Hot Gaseous Halo from X-Ray Emission , 2017, 1710.02116.

[16]  C. Heymans,et al.  Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments , 2017, Astronomy & Astrophysics.

[17]  C. Heymans,et al.  Probing the missing baryons with the Sunyaev-Zel’dovich effect from filaments , 2017, Astronomy & Astrophysics.

[18]  S. Borgani,et al.  The large-scale environment from cosmological simulations - I. The baryonic cosmic web , 2017, 1708.02302.

[19]  V. Wild,et al.  COS-burst: Observations of the Impact of Starburst-driven Winds on the Properties of the Circum-galactic Medium , 2017, 1707.05933.

[20]  Cca,et al.  The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations , 2017, 1707.05318.

[21]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[22]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[23]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[24]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[25]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[26]  M. Steinmetz,et al.  Stacking the Cosmic Web in fluorescent Ly α emission with MUSE , 2017, 1706.03785.

[27]  Y. Hoffman,et al.  The Cosmic V-Web , 2017, 1706.03413.

[28]  Rien van de Weygaert,et al.  Tracing the cosmic web , 2017, 1705.03021.

[29]  Job Feldbrugge,et al.  Caustic Skeleton & Cosmic Web , 2017, 1703.09598.

[30]  Annalisa Pillepich,et al.  Simulating galaxy formation with the IllustrisTNG model , 2017, 1703.02970.

[31]  Weishan Zhu,et al.  Evolution of Mass and Velocity Field in the Cosmic Web: Comparison Between Baryonic and Dark Matter , 2017, 1702.06768.

[32]  Durham,et al.  The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium , 2017, 1702.02618.

[33]  K. Hasegawa,et al.  Can HI 21 cm line trace the Missing Baryons in the Filamentary Structures , 2017, 1702.00193.

[34]  S. Borgani,et al.  The history of chemical enrichment in the intracluster medium from cosmological simulations , 2017, 1701.08164.

[35]  S. Shandarin,et al.  The features of the Cosmic Web unveiled by the flip-flop field , 2016, 1609.08554.

[36]  David Schiminovich,et al.  THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS , 2016, 1609.06308.

[37]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[38]  D. Schiminovich,et al.  EMPIRICALLY CONSTRAINED PREDICTIONS FOR METAL-LINE EMISSION FROM THE CIRCUMGALACTIC MEDIUM , 2016, 1607.08616.

[39]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[40]  A. Hopkins,et al.  Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations. , 2016, 1607.01406.

[41]  E. Quataert,et al.  The impact of star formation feedback on the circumgalactic medium , 2016, 1606.06734.

[42]  Harvard,et al.  Simulating the dust content of galaxies: successes and failures , 2016, 1606.02714.

[43]  K. Lee,et al.  REVEALING THE z ∼ 2.5 COSMIC WEB WITH 3D Lyα FOREST TOMOGRAPHY: A DEFORMATION TENSOR APPROACH , 2016, 1603.04441.

[44]  A. Barab'asi,et al.  Discriminating topology in galaxy distributions using network analysis , 2016, 1603.02285.

[45]  C. Gheller,et al.  Detecting the cosmic web with radio surveys , 2016, 1602.07526.

[46]  Caltech,et al.  A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes , 2016, 1601.07188.

[47]  J. Xavier Prochaska,et al.  THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR , 2016, 1601.01691.

[48]  Michael T. Johnson,et al.  Lagrangian methods of cosmic web classification , 2015, 1511.05971.

[49]  J. Schaye,et al.  Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations , 2015, 1511.01094.

[50]  J. Suresh,et al.  On the OVI abundance in the circumgalactic medium of low-redshift galaxies , 2015, 1511.00687.

[51]  R. Teyssier,et al.  Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters , 2015, 1510.00718.

[52]  C. Genovese,et al.  Cosmic web reconstruction through density ridges: catalogue , 2015, 1509.06443.

[53]  V. Springel,et al.  Large-scale mass distribution in the Illustris simulation , 2015, 1508.01525.

[54]  A. Kravtsov,et al.  Column density profiles of multiphase gaseous haloes , 2015, 1507.07002.

[55]  J. Prochaska,et al.  Towards the statistical detection of the warm-hot intergalactic medium in intercluster filaments of the cosmic web , 2015, 1506.01031.

[56]  Caltech,et al.  Dust Formation in Milky Way-like Galaxies , 2015, 1505.04792.

[57]  Sean D. Johnson,et al.  On the possible environmental effect in distributing heavy elements beyond individual gaseous haloes , 2015, 1503.04199.

[58]  R. Kraft,et al.  HOT GASEOUS CORONAE AROUND SPIRAL GALAXIES: PROBING THE ILLUSTRIS SIMULATION , 2015, 1503.01107.

[59]  Benjamin Dan Wandelt,et al.  Cosmic web-type classification using decision theory , 2015, 1503.00730.

[60]  D. York,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SUB-DAMPED Lyα ABSORBERS AT z < 0.5, AND IMPLICATIONS FOR GALAXY CHEMICAL EVOLUTION , 2015, 1502.01989.

[61]  L. A. Phillips,et al.  Star formation and gas phase history of the cosmic web , 2014, 1412.7050.

[62]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.

[63]  B. Garilli,et al.  LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2 , 2014, 1409.5632.

[64]  Shy Genel,et al.  The Illustris simulation: the evolving population of black holes across cosmic time , 2014, 1408.6842.

[65]  J. Michael Shull,et al.  HST-COS OBSERVATIONS OF AGNs. II. EXTENDED SURVEY OF ULTRAVIOLET COMPOSITE SPECTRA FROM 159 ACTIVE GALACTIC NUCLEI , 2014, 1408.5900.

[66]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[67]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[68]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[69]  D. Weinberg,et al.  THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2014, 1403.0947.

[70]  M. Pieri,et al.  AN HST/COS SURVEY OF THE LOW-REDSHIFT INTERGALACTIC MEDIUM. I. SURVEY, METHODOLOGY, AND OVERALL RESULTS , 2014, 1402.2655.

[71]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[72]  M. White The Zel'dovich approximation , 2014, 1401.5466.

[73]  S. Sivanandam,et al.  GALAXY CLUSTER BARYON FRACTIONS REVISITED , 2013, 1309.3565.

[74]  Smita Mathur,et al.  The Hot and Energetic Universe: The missing baryons and the warm-hot intergalactic medium , 2013, 1306.2324.

[75]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[76]  Thierry Sousbie,et al.  DisPerSE: robust structure identification in 2D and 3D , 2013, 1302.6221.

[77]  India,et al.  THE 2013 RELEASE OF CLOUDY , 2013, 1302.4485.

[78]  S. Paltani,et al.  The X-ray/SZ view of the virial region. II. Gas mass fraction , 2013, 1301.0624.

[79]  R. Kraft,et al.  HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS , 2012, 1212.0541.

[80]  C. Churchill,et al.  MAGiiCAT II. GENERAL CHARACTERISTICS OF THE Mg ii ABSORBING CIRCUMGALACTIC MEDIUM , 2012, 1211.1380.

[81]  C. Churchill,et al.  THE SELF-SIMILARITY OF THE CIRCUMGALACTIC MEDIUM WITH GALAXY VIRIAL MASS: IMPLICATIONS FOR COLD-MODE ACCRETION , 2012, 1211.1008.

[82]  Rien van de Weygaert,et al.  NEXUS: Tracing the cosmic web connection , 2012, 1209.2043.

[83]  C. Churchill,et al.  TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg ii ABSORPTION , 2012, 1205.0245.

[84]  M. Aragon-Calvo,et al.  Radio emission in the cosmic web , 2012, 1204.1759.

[85]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[86]  Y. Hoffman,et al.  A kinematic classification of the cosmic web , 2012, 1201.3367.

[87]  Britton D. Smith,et al.  THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.

[88]  R. Teyssier,et al.  Observable signatures of the low-z circumgalactic and intergalactic media: ultraviolet line emission in simulations , 2011, 1111.3028.

[89]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[90]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[91]  B. O’Shea,et al.  THE NATURE OF THE WARM/HOT INTERGALACTIC MEDIUM. I. NUMERICAL METHODS, CONVERGENCE, AND O vi ABSORPTION , 2010, 1009.0261.

[92]  J. Schaye,et al.  Absorption signatures of warm-hot gas at low redshift: O vi , 2010, 1007.2840.

[93]  Juna A. Kollmeier,et al.  The intergalactic medium over the last 10 billion years – I. Lyα absorption and physical conditions , 2010, 1005.2421.

[94]  G. Tagliaferri,et al.  STUDYING THE WHIM CONTENT OF LARGE-SCALE STRUCTURES ALONG THE LINE OF SIGHT TO H 2356-309 , 2010, 1004.5359.

[95]  Claudio Dalla Vecchia,et al.  Metal-line emission from the warm-hot intergalactic medium - II. Ultraviolet , 2010, 1002.3393.

[96]  Volker Springel,et al.  The impact of feedback on the low-redshift intergalactic medium , 2009, 0911.0699.

[97]  Luigi Piro,et al.  STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS , 2009 .

[98]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[99]  R. Weygaert,et al.  THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.

[100]  J. E. Forero-Romero,et al.  A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.

[101]  Stéphane Colombi,et al.  The fully connected N-dimensional skeleton: probing the evolution of the cosmic web , 2008, ArXiv.

[102]  B. Oppenheimer,et al.  The nature and origin of low‐redshift O vi absorbers , 2008, 0806.2866.

[103]  C. Steidel,et al.  HALO GAS CROSS SECTIONS AND COVERING FRACTIONS OF Mg ii ABSORPTION SELECTED GALAXIES , 2007, 0710.5765.

[104]  C. Danforth,et al.  The Low-z Intergalactic Medium. III. H I and Metal Absorbers at z < 0.4 , 2007, 0709.4030.

[105]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[106]  Oliver Hahn,et al.  Properties of dark matter haloes in clusters, filaments, sheets and voids , 2006, astro-ph/0610280.

[107]  J. M. van der Hulst,et al.  Spin Alignment of Dark Matter Halos in Filaments and Walls , 2006, astro-ph/0610249.

[108]  Romeel Dav'eBenjamin D. Oppenheimer The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.

[109]  F. Paerels,et al.  The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra , 2006, astro-ph/0604519.

[110]  F. Paerels,et al.  On the Putative Detection of z > 0 X-Ray Absorption Features in the Spectrum of Mrk 421 , 2006, astro-ph/0604515.

[111]  R. Cen,et al.  Where Are the Baryons? II. Feedback Effects , 2005, astro-ph/0601008.

[112]  W. Sargent,et al.  Observations of Chemically Enriched QSO Absorbers near z~2.3 Galaxies: Galaxy Formation Feedback Signatures in the Intergalactic Medium , 2005, astro-ph/0508116.

[113]  M. Viel,et al.  Expansion and Collapse in the Cosmic Web , 2005, Proceedings of the International Astronomical Union.

[114]  Antonella Fruscione,et al.  The mass of the missing baryons in the X-ray forest of the warm–hot intergalactic medium , 2005, Nature.

[115]  E. Branchini,et al.  Tracing the warm-hot intergalactic medium in the local Universe , 2004, astro-ph/0412566.

[116]  R. Cen,et al.  Shock-heated Gas in the Large-Scale Structure of the Universe , 2004, astro-ph/0410477.

[117]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[118]  M. Fukugita Cosmic Matter Distribution: Cosmic Baryon Budget Revisited , 2003, astro-ph/0312517.

[119]  Volker Springel,et al.  Mapping the Cosmic Web with Lyα Emission , 2003, astro-ph/0311006.

[120]  Y. Suto,et al.  Detectability of the Warm/Hot Intergalactic Medium through Emission Lines of O VII and O VIII , 2003, astro-ph/0303281.

[121]  N. Suzuki,et al.  The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H toward Q1243+3047 , 2003, astro-ph/0302006.

[122]  R. Cen,et al.  Revealing the Warm-Hot Intergalactic Medium with O VI Absorption , 2001, astro-ph/0106204.

[123]  L. A. Phillips,et al.  Is There Still Room for Warm/Hot Gas? Simulating the X-Ray Background Spectrum , 2000, astro-ph/0011348.

[124]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[125]  B. Sathyaprakash,et al.  Disentangling the Cosmic Web. I. Morphology of Isodensity Contours , 1999, astro-ph/9904384.

[126]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[127]  R. Cen,et al.  Where Are the Baryons? , 1998, astro-ph/9806281.

[128]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[129]  L. Hernquist,et al.  The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background , 1996, astro-ph/9612245.

[130]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[131]  N. Aghanim,et al.  A search for warm/hot gas filaments between pairs of SDSS Luminous Red Galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[132]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .