Improving geocoding matching rates of structured addresses in Rio de Janeiro, Brazil.
暂无分享,去创建一个
[1] Jiyeong Lee,et al. Improving a Street-Based Geocoding Algorithm Using Machine Learning Techniques , 2020, Applied Sciences.
[2] Luzia Gonçalves,et al. Common Medical and Statistical Problems: The Dilemma of the Sample Size Calculation for Sensitivity and Specificity Estimation , 2020, Mathematics.
[3] J. Clougherty,et al. Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology , 2020, International journal of environmental research and public health.
[4] Daniel Arribas-Bel,et al. Machine learning innovations in address matching: A practical comparison of word2vec and CRFs , 2019, Trans. GIS.
[5] I. Silveira,et al. Utilização do Google Maps para o georreferenciamento de dados do Sistema de Informações sobre Mortalidade no município do Rio de Janeiro, 2010-2012* , 2017 .
[6] T. Edwin Chow,et al. Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions , 2016, Ann. GIS.
[7] Clodoveu A. Davis,et al. Evaluation of the quality of an online geocoding resource in the context of a large Brazilian city , 2011, Trans. GIS.
[8] P. Zandbergen. Geocoding Quality and Implications for Spatial Analysis , 2009 .
[9] Marilia Sá Carvalho,et al. Geoprocessamento dos dados da saúde: o tratamento dos endereços , 2004 .
[10] I. Silveira,et al. [Use of Google Maps for geocoding data from the Mortality Information System in Rio de Janeiro municipality, Brazil, 2010-2012]. , 2017, Epidemiologia e servicos de saude : revista do Sistema Unico de Saude do Brasil.
[11] Craig A. Knoblock,et al. From Text to Geographic Coordinates: The Current State of Geocoding , 2007 .
[12] Rafael Giusti,et al. Automatic detection of spelling variation in historical corpus An application to build a Brazilian Portuguese spelling variants dictionary , 2007 .