Remote control over guidance and release properties of composite polyelectrolyte based capsules.

Polyelectrolyte multilayer capsules represent a unique tool to fabricate micron- and submicron-sized delivery systems with the properties of external guidance by means of remote physical influence. Embedding of nanoparticles into polyelectrolyte multilayer constructs opens up the opportunities to navigate the capsules with magnetic field and in-situ trigger the release of encapsulated material in response to the physical stimuli, such as light and ultrasound. So far, optically- and magnetically-induced addressing of the polyelectrolyte multilayer capsules internalized by the living cells in-vitro has been demonstrated. In this review, we discuss the state of the art, future perspectives and anticipated obstacles of in-vivo and in-vitro applications of the polyelectrolyte capsules performing remotely controlled release delivery of bioactives.

[1]  D. Braun,et al.  Nanoparticles Distribution Control by Polymers: Aggregates versus Nonaggregates , 2007 .

[2]  G. Sukhorukov,et al.  Nanorods as Wavelength‐Selective Absorption Centers in the Visible and Near‐Infrared Regions of the Electromagnetic Spectrum , 2008 .

[3]  D. Braun,et al.  Toward self-assembly of nanoparticles on polymeric microshells: near-IR release and permeability. , 2008, ACS nano.

[4]  G. Sukhorukov,et al.  Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules , 2003 .

[5]  Rainer Duden,et al.  Peptide-receptive Major Histocompatibility Complex Class I Molecules Cycle between Endoplasmic Reticulum and cis-Golgi in Wild-type Lymphocytes* , 2007, Journal of Biological Chemistry.

[6]  N. Rapoport Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery , 2007 .

[7]  Jon Cardinal,et al.  Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. , 2008, Surgery.

[8]  Kristian Berg,et al.  Photochemical internalisation in drug and gene delivery. , 2004, Advanced drug delivery reviews.

[9]  E. Kumacheva,et al.  Evolution of Self‐Assembled Structures of Polymer‐Terminated Gold Nanorods in Selective Solvents , 2008 .

[10]  W. Hennink,et al.  Polyelectrolyte microcapsules for biomedical applications , 2009 .

[11]  Chaoyang Wang,et al.  Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release , 2005, Journal of biomaterials science. Polymer edition.

[12]  M. Antonietti,et al.  CO2-switchable oligoamine patches based on amino acids and their use to build polyelectrolyte containers with intelligent gating. , 2008, Soft matter.

[13]  Helmuth Möhwald,et al.  Magnetic Core–Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres , 1999 .

[14]  U Teichgräber,et al.  Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. , 2006, Nano letters.

[15]  Helmuth Möhwald,et al.  Ultrasonically induced opening of polyelectrolyte microcontainers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[16]  Junbai Li,et al.  Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells , 2007 .

[17]  M. Lynch,et al.  Linear assemblies of magnetic nanoparticles as MRI contrast agents. , 2008, Journal of the American Chemical Society.

[18]  M. Magnani,et al.  Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides , 2002, Gene Therapy.

[19]  H. Möhwald,et al.  Reversibly permeable nanomembranes of polymeric microcapsules. , 2008, Journal of the American Chemical Society.

[20]  Jia-cong Shen,et al.  Spontaneous deposition of water-soluble substances into microcapsules: phenomenon, mechanism, and application. , 2002, Angewandte Chemie.

[21]  J. Graves,et al.  Controlled protein release from microcapsules with composite shells using high frequency ultrasound—potential for in vivo medical use , 2011 .

[22]  Nicholas A Kotov,et al.  Ultrasound-triggered release from multilayered capsules. , 2007, Small.

[23]  J. Bibette Monodisperse ferrofluid emulsions , 1993 .

[24]  A. Vogel,et al.  Mechanisms of pulsed laser ablation of biological tissues. , 2003, Chemical reviews.

[25]  H. Möhwald,et al.  Polyelectrolyte multilayer capsule permeability control , 2002 .

[26]  Helmuth Möhwald,et al.  Near-IR remote release from assemblies of liposomes and nanoparticles. , 2009, Angewandte Chemie.

[27]  G. Sukhorukov,et al.  Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside , 2003 .

[28]  C. Miller,et al.  Visible light‐induced destabilization of endocytosed liposomes , 2000, FEBS letters.

[29]  Wolfgang J Parak,et al.  Laser-induced release of encapsulated materials inside living cells. , 2006, Angewandte Chemie.

[30]  J. Reynolds,et al.  In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue , 2005 .

[31]  Helmuth Möhwald,et al.  Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. , 2008, Physical chemistry chemical physics : PCCP.

[32]  G. Sukhorukov,et al.  Mechanism of protein release from polyelectrolyte multilayer microcapsules. , 2010, Biomacromolecules.

[33]  G. Sukhorukov,et al.  Patterned microcontainers as novel functional elements for microTAS and LOC. , 2009, Lab on a chip.

[34]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[35]  R. Sharma,et al.  Newer nanoparticles in hyperthermia treatment and thermometry , 2009 .

[36]  Zonghuan Lu,et al.  Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[37]  G. Sukhorukov,et al.  Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiation , 2006 .

[38]  G. Khomutov,et al.  Nanocomposite Microcontainers with High Ultrasound Sensitivity , 2010 .

[39]  Vladimir R Muzykantov,et al.  Drug delivery by red blood cells: vascular carriers designed by mother nature , 2010, Expert opinion on drug delivery.

[40]  T. Tadros,et al.  Light-sensitive fusion between polymer-coated liposomes following physical anchoring of polymerisable polymers onto lipid bilayers by self-assembly. , 2005, Faraday discussions.

[41]  H. Möhwald,et al.  Multifunctional cargo systems for biotechnology. , 2007, Trends in biotechnology.

[42]  F. Caruso,et al.  Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach , 2001 .

[43]  Benno Radt,et al.  Light-responsive polyelectrolyte/gold nanoparticle microcapsules. , 2005, The journal of physical chemistry. B.

[44]  Gleb B Sukhorukov,et al.  Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[45]  A. Elaissari,et al.  Preparation and biomedical application of layer-by-layer encapsulated oil in water magnetic emulsion , 2005 .

[46]  G. Sukhorukov,et al.  Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[47]  S. Mitragotri,et al.  Current status and future potential of transdermal drug delivery , 2004, Nature Reviews Drug Discovery.

[48]  H. Möhwald,et al.  Synthesis of silver nanoparticles for remote opening of polyelectrolyte microcapsules. , 2007, Langmuir.

[49]  Dieter Braun,et al.  The role of metal nanoparticles in remote release of encapsulated materials. , 2005, Nano letters.

[50]  S. Goldberg,et al.  Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. , 2005, Journal of vascular and interventional radiology : JVIR.

[51]  H. Möhwald,et al.  Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules. , 2001 .

[52]  Helmuth Möhwald,et al.  Controlled intracellular release of peptides from microcapsules enhances antigen presentation on MHC class I molecules. , 2009, Small.

[53]  Gleb B. Sukhorukov,et al.  Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules , 2007 .

[54]  Chitta Ranjan Patra,et al.  Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells , 2008, Journal of nanobiotechnology.

[55]  G. Sukhorukov,et al.  Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method. , 2006, Journal of colloid and interface science.

[56]  Dean-Mo Liu,et al.  Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[57]  Benno Radt,et al.  Optically Addressable Nanostructured Capsules , 2004 .

[58]  Matteo Pasquali,et al.  Carbon nanotube‐enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field , 2007, Cancer.

[59]  G. Sukhorukov,et al.  Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors , 2004 .

[60]  G. Sukhorukov,et al.  Inorganic Particle Synthesis in Confined Micron-Sized Polyelectrolyte Capsules , 2002 .

[61]  D. Gorin,et al.  Magnetic microcapsules with low permeable polypyrrole skin layer , 2006 .

[62]  D. Irvine,et al.  Freely Suspended Cellular “Backpacks” Lead to Cell Aggregate Self-Assembly , 2010, Biomacromolecules.

[63]  H. Möhwald,et al.  Multicompartmental micro- and nanocapsules: hierarchy and applications in biosciences. , 2010, Macromolecular bioscience.

[64]  G. Sukhorukov,et al.  Heat Treatment of Polyelectrolyte Multilayer Capsules: A Versatile Method for Encapsulation , 2007 .

[65]  G. Sukhorukov,et al.  Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[66]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[67]  M. Ashokkumar,et al.  Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. , 2005, Ultrasonics sonochemistry.

[68]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[69]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[70]  H. Möhwald,et al.  Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. , 2007, Angewandte Chemie.

[71]  Poly(sodium-4-styrene)sulfonate−Iron Oxide Nanocomposite Dispersions with Controlled Magnetic Resonance Properties , 2008 .

[72]  Jean Paul Remon,et al.  Polymeric multilayer capsules in drug delivery. , 2010, Angewandte Chemie.

[73]  Wah Chiu,et al.  Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. , 2008, Journal of the American Chemical Society.

[74]  G. Sukhorukov,et al.  Polymer Microcapsules with Carbohydrate‐Sensitive Properties , 2008 .

[75]  G. Sukhorukov,et al.  Assembling polyelectrolytes and porphyrins into hollow capsules with laser-responsive oxidative properties , 2009 .

[76]  Gleb B. Sukhorukov,et al.  Remote Control of Bioreactions in Multicompartment Capsules , 2007 .

[77]  H. Fain,et al.  Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[78]  Shao-ling Huang,et al.  Liposomes in ultrasonic drug and gene delivery. , 2008, Advanced drug delivery reviews.

[79]  Kenneth S. Suslick,et al.  Ultrasound: Its Chemical, Physical, and Biological Effects , 1988 .