Bright octave-span mid-IR supercontinuum generation in silicon germanium waveguide

We present silicon-germanium on silicon waveguides as a suitable platform for on-chip supercontinuum generation in the mid-infrared. We report low propagation loss (<0.4dB∕cm) in the 3.5-5 μm range, leading to an octave spanning supercontinuum extending up to 8.5 μm with a high average power of more than 10 mW on-chip. Furthermore, we present the addition of a chalcogenide cladding layer as a simple post-processing technique to fine tune the waveguide dispersion which, in turn, governs the properties of the generated supercontinuum.

[1]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[2]  P St J Russell,et al.  Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters. , 2010, Optics letters.

[3]  C Monat,et al.  Mid-infrared nonlinear optical response of Si-Ge waveguides with ultra-short optical pulses. , 2015, Optics express.

[4]  C Monat,et al.  Reconfigurable photonic crystal waveguides created by selective liquid infiltration. , 2012, Optics express.

[5]  Scott A. Diddams,et al.  Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy , 2017, 1707.03679.

[6]  P. Monnier,et al.  Tuning a two-dimensional photonic crystal resonance via optical carrier injection. , 2005, Optics letters.

[7]  Younes Messaddeq,et al.  Toward all-fiber supercontinuum spanning the mid-infrared , 2017 .

[8]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber. , 2016, Optics letters.

[9]  B. Luther-Davies,et al.  On the properties and stability of thermally evaporated Ge–As–Se thin films , 2009 .

[10]  Arnan Mitchell,et al.  Dispersion trimming for mid-infrared supercontinuum generation in a hybrid chalcogenide/silicon-germanium waveguide , 2019, Journal of the Optical Society of America B.

[11]  Yuan Wang,et al.  Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. , 2018, Optics letters.

[12]  Yi Yu,et al.  Experimental demonstration of linearly polarized 2-10  μm supercontinuum generation in a chalcogenide rib waveguide. , 2016, Optics letters.

[13]  David J. Moss,et al.  Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire , 2015 .

[14]  Wayne H. Knox,et al.  Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers , 2006 .

[15]  L Vivien,et al.  Graded SiGe waveguides with broadband low-loss propagation in the mid infrared. , 2018, Optics express.

[16]  Mathieu Carras,et al.  Low-loss Ge-rich Si0.2Ge0.8 waveguides for mid-infrared photonics. , 2017, Optics letters.

[17]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[18]  Arnan Mitchell,et al.  Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides , 2018 .

[19]  Jurgen Michel,et al.  Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared , 2014 .

[20]  Richard A. Soref,et al.  The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared , 2011 .

[21]  Shanhui Fan,et al.  Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning , 2008 .

[22]  Benjamin J. Eggleton,et al.  Reconfigurable photonic crystal circuits , 2010 .

[23]  L Carletti,et al.  Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. , 2015, Optics express.

[24]  Trevor M. Benson,et al.  Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation , 2014 .

[25]  M. Lipson,et al.  Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. , 2014, Optics letters.

[26]  Christos Markos,et al.  Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. , 2017, Optics express.

[27]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.