Predictive control of 2 D spatial thermal dose delivery in atmospheric pressure plasma jets

Atmospheric pressure plasma jets (APPJs) are unique devices for processing of heat and pressure sensitive (bio)materials. However, operational challenges of APPJs such as run-to-run variability in dynamics and sensitivity to disturbances can complicate safe and reliable delivery of the spatially distributed cumulative effects of plasma, or plasma dose, to complex surfaces. This paper presents a hierarchical feedback control strategy based on model predictive control for regulating the spatial thermal dose delivery to a surface. Closed-loop control experiments demonstrate the effectiveness of the proposed control strategy in drastically improving the spatial uniformity of thermal dose delivery in the presence of step changes in the jet tip-to-surface distance as well as abrupt changes in the substrate type. The proposed feedback control strategy shows promise for improving the reliability and effectiveness of spatially uniform treatment of complex surfaces in medical and materials processing applications of APPJs.

[1]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .

[2]  David B. Graves,et al.  Spatial thermal dose delivery in atmospheric pressure plasma jets , 2019, Plasma Sources Science and Technology.

[3]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[4]  B. Bequette,et al.  Process Control: Modeling, Design and Simulation , 2003 .

[5]  Rino Morent Editorial - Atmospheric Pressure Plasma Polymerization , 2013 .

[6]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[7]  Etching materials with an atmospheric-pressure plasma jet , 1998 .

[8]  P. J. Hoopes,et al.  Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[9]  L. Raja,et al.  Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges , 2007 .

[10]  David B. Graves,et al.  Effective dose delivery in atmospheric pressure plasma jets for plasma medicine: a model predictive control approach , 2017 .

[11]  K. S. Siow,et al.  Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization ‐ A Review , 2006 .

[12]  Yuan Pan,et al.  Study on a Room-Temperature Air Plasma for Biomedical Application , 2011, IEEE Transactions on Plasma Science.

[13]  K. Weltmann,et al.  Back and forth directed plasma bullets in a helium atmospheric pressure needle-to-plane discharge with oxygen admixtures , 2012 .

[14]  T. von Woedtke,et al.  Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma , 2014 .

[15]  Ronny Brandenburg,et al.  Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation , 2009 .

[16]  Anne Perwuelz,et al.  Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion , 2009 .

[17]  Mounir Laroussi,et al.  Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure , 2004 .

[18]  Taeyoung Lee,et al.  Mathematical modeling and control for cancer treatment with cold atmospheric plasma jet , 2019, Journal of Physics D: Applied Physics.

[19]  K. Weltmann,et al.  On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device , 2016 .

[20]  Hans-Robert Metelmann,et al.  Treating cancer with cold physical plasma: On the way to evidence‐based medicine , 2018 .

[21]  R. Brandenburg,et al.  Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure Rf‐Driven Plasma Jet , 2007 .

[22]  Fan Wu,et al.  Investigation of plasma dynamics and spatially varying O and OH concentrations in atmospheric pressure plasma jets impinging on glass, water and metal substrates , 2018, Plasma Sources Science and Technology.

[23]  W. Stolz,et al.  Non-thermal plasma—More than five years of clinical experience , 2013 .

[24]  S. Ji,et al.  Effect of the Grounded Electrode on Cold Ar Atmospheric Pressure Plasma Jet Generated With a Simple DBD Configuration , 2014, IEEE Transactions on Plasma Science.

[25]  S. Ptasińska,et al.  Effect of Additive Oxygen on the Reactive Species Profile and Microbicidal Property of a Helium Atmospheric Pressure Plasma Jet , 2016 .

[26]  Stephan Reuter,et al.  Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry , 2013 .

[27]  Eric Johnsen,et al.  Helium atmospheric pressure plasma jets touching dielectric and metal surfaces , 2015 .

[28]  Pascal Tristant,et al.  Atmospheric pressure plasmas: A review , 2006 .

[29]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[30]  David B. Graves,et al.  Model-Based Feedback Control of a kHz-Excited Atmospheric Pressure Plasma Jet , 2018, IEEE Transactions on Radiation and Plasma Medical Sciences.

[31]  David B. Graves,et al.  Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas , 2019, Journal of Physics D: Applied Physics.

[32]  W. Dewey,et al.  Thermal dose determination in cancer therapy. , 1984, International journal of radiation oncology, biology, physics.

[33]  Yang Xia,et al.  The effect of target materials on the propagation of atmospheric-pressure plasma jets , 2018 .

[34]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[35]  D. Luenberger Observers for multivariable systems , 1966 .

[36]  Ilarion Mihaila,et al.  Time Behaviour of Helium Atmospheric Pressure Plasma Jet Electrical and Optical Parameters , 2017 .

[37]  L. Raja,et al.  Computational study of the interaction of cold atmospheric helium plasma jets with surfaces , 2014 .