Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser

Abstract Titanium dioxide (TiO 2 ) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO 2 was observed. Micro-Raman spectra show that the intensity of E g Raman vibrating mode of rutile phase increases and that of A 1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO 2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a constant with increasing of fs pulse laser irradiation time. The study indicates the more stable rutile phase is transformed into anatase phase by the high pressure produced by fs pulse laser irradiation.

[1]  R. Yen,et al.  Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon , 1983 .

[2]  Shiv k. Sharma,et al.  Raman study of rutile (TiO2) at high pressures , 1980 .

[3]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[4]  Stampfli,et al.  Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions. , 1994, Physical review. B, Condensed matter.

[5]  J. C. Jamieson,et al.  Shock-Wave Compression and X-Ray Studies of Titanium Dioxide , 1967, Science.

[6]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[7]  T. C. Damen,et al.  Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .

[8]  Jianzhong Jiang,et al.  High-pressure polymorphs of anatase TiO 2 , 2000 .

[9]  S. Desgreniers,et al.  Raman study of single crystal anatase TiO2 up to 70 GPa , 1995 .

[10]  J. Jiang,et al.  On the rutile/α-PbO2-type phase boundary of TiO2 , 1999 .

[11]  M. Straub,et al.  Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing , 2005 .

[12]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[13]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[14]  X. Gonze,et al.  First-principles study of titanium dioxide: Rutile and anatase , 2000 .

[15]  W. Plieth,et al.  Electrochemical synthesis and In situ Raman spectroscopy of thin films of Titanium dioxide , 1991 .

[16]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[17]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[18]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[19]  Hua Chang,et al.  Thermo-Raman studies on anatase and rutile , 1998 .

[20]  L. Dubrovinsky,et al.  Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase Ti O 2 , 2005 .

[21]  Qiu Jianrong,et al.  Fabrication of Dammann Gratings Inside Glasses by a Femtosecond Laser , 2004 .

[22]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[23]  Jun Chen,et al.  UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. , 2006, The journal of physical chemistry. B.

[24]  Klaus Sokolowski-Tinten,et al.  Generation of dense electron-hole plasmas in silicon , 2000 .

[25]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[26]  Jinlong Yang,et al.  Ultrafast Interfacial Proton-Coupled Electron Transfer , 2006, Science.