89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer

[1]  F. Bowman,et al.  Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. , 2014, The Journal of urology.

[2]  V. Ambrosini,et al.  18F-FACBC compared with 11C-choline PET/CT in patients with biochemical relapse after radical prostatectomy: a prospective study in 28 patients. , 2014, Clinical genitourinary cancer.

[3]  Yongjun Yan,et al.  A new 68Ga-labeled BBN peptide with a hydrophilic linker for GRPR-targeted tumor imaging , 2014, Amino Acids.

[4]  P. Choyke,et al.  Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. , 2014, Radiology.

[5]  W. Schultze‐Seemann,et al.  Positron Emission Tomography (PET) Imaging of Prostate Cancer with a Gastrin Releasing Peptide Receptor Antagonist - from Mice to Men , 2014, Theranostics.

[6]  B. Hadaschik,et al.  I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy , 2014 .

[7]  T. Holland-Letz,et al.  Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  Steve Y. Cho,et al.  Translational Molecular Imaging of Prostate Cancer , 2013, Current Radiology Reports.

[9]  D. Rubello,et al.  11C-Choline PET/CT Scan in Patients With Prostate Cancer Treated With Intermittent ADT: A Sequential PET/CT Study , 2013, Clinical nuclear medicine.

[10]  S. Larson,et al.  Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable? , 2013, Seminars in oncology.

[11]  S. Larson,et al.  89Zr J591 immunoPET imaging in patients with prostate cancer , 2013 .

[12]  A. Kibel,et al.  11C-Acetate PET/CT Before Radical Prostatectomy: Nodal Staging and Treatment Failure Prediction , 2013, The Journal of Nuclear Medicine.

[13]  R. Dierckx,et al.  Preclinical evaluation of a novel ¹¹¹In-labeled bombesin homodimer for improved imaging of GRPR-positive prostate cancer. , 2013, Molecular pharmaceutics.

[14]  M. Picchio,et al.  11C-Choline PET/CT and PSA kinetics , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  U. Haberkorn,et al.  PSMA as a target for radiolabelled small molecules , 2013, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  William C. Eckelman,et al.  First-in-Man Evaluation of 2 High-Affinity PSMA-Avid Small Molecules for Imaging Prostate Cancer , 2013, The Journal of Nuclear Medicine.

[17]  J. Humm,et al.  Phase I trial of zirconium 89 (Zr89) radiolabeled J591 in metastatic castration-resistant prostate cancer (mCRPC). , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  George Sgouros,et al.  Biodistribution, Tumor Detection, and Radiation Dosimetry of 18F-DCFBC, a Low-Molecular-Weight Inhibitor of Prostate-Specific Membrane Antigen, in Patients with Metastatic Prostate Cancer , 2012, The Journal of Nuclear Medicine.

[19]  W. Oyen,et al.  Prospects in radionuclide imaging of prostate cancer , 2012, The Prostate.

[20]  Fan Wang,et al.  Evaluation of a technetium-99m labeled bombesin homodimer for GRPR imaging in prostate cancer , 2012, Amino Acids.

[21]  W. Oyen,et al.  PET of Tumors Expressing Gastrin-Releasing Peptide Receptor with an 18F-Labeled Bombesin Analog , 2012, The Journal of Nuclear Medicine.

[22]  T. Hoffman,et al.  Bombesin analogues for gastrin-releasing peptide receptor imaging. , 2012, Nuclear medicine and biology.

[23]  V. Ambrosini,et al.  11C-Choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[24]  F. Forrer,et al.  Bombesin Antagonist–Based Radioligands for Translational Nuclear Imaging of Gastrin-Releasing Peptide Receptor–Positive Tumors , 2011, The Journal of Nuclear Medicine.

[25]  W. Eckelman,et al.  123I-MIP-1072, a Small-Molecule Inhibitor of Prostate-Specific Membrane Antigen, Is Effective at Monitoring Tumor Response to Taxane Therapy , 2011, The Journal of Nuclear Medicine.

[26]  E. Krenning,et al.  Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[27]  S. Larson,et al.  89Zr-DFO-J591 for ImmunoPET of Prostate-Specific Membrane Antigen Expression In Vivo , 2010, The Journal of Nuclear Medicine.

[28]  P. Jurek,et al.  Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine , 2010, Nature Protocols.

[29]  Ximing J. Yang,et al.  Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. , 2009, Human pathology.

[30]  Jason S. Lewis,et al.  Standardized methods for the production of high specific-activity zirconium-89. , 2009, Nuclear medicine and biology.

[31]  S. Larson,et al.  Antibody Mass Escalation Study in Patients with Castration-Resistant Prostate Cancer Using 111In-J591: Lesion Detectability and Dosimetric Projections for 90Y Radioimmunotherapy , 2008, Journal of Nuclear Medicine.

[32]  J. Votaw,et al.  Biodistribution and Radiation Dosimetry of the Synthetic Nonmetabolized Amino Acid Analogue Anti-18F-FACBC in Humans , 2007, Journal of Nuclear Medicine.

[33]  S. Larson,et al.  Phase I Evaluation of J591 as a Vascular Targeting Agent in Progressive Solid Tumors , 2007, Clinical Cancer Research.

[34]  S. Larson,et al.  Pilot Trial of Unlabeled and Indium-111–Labeled Anti–Prostate-Specific Membrane Antigen Antibody J591 for Castrate Metastatic Prostate Cancer , 2005, Clinical Cancer Research.

[35]  Michael G Stabin,et al.  OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[36]  S. Vallabhajosula,et al.  Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  N. Bander,et al.  Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. , 2003, The Journal of urology.

[38]  S. Vallabhajosula,et al.  Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. , 2003, The Journal of urology.

[39]  N. Bander,et al.  Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. , 2003, Seminars in oncology.

[40]  Y. Erdi,et al.  Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. , 2000, Medical physics.

[41]  D. Bostwick,et al.  Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen , 1998, Cancer.

[42]  N. Bander,et al.  Constitutive and antibody-induced internalization of prostate-specific membrane antigen. , 1998, Cancer research.

[43]  D. Bostwick,et al.  Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma , 1998, Cancer.

[44]  C Cobelli,et al.  SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. , 1998, Metabolism: clinical and experimental.

[45]  P. Bunn,et al.  Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. , 1984, Journal of immunological methods.