Optimal sequential designs for on-line item estimation

Replenishing item pools for on-line ability testing requires innovative and efficient data collection designs. By generating localD-optimal designs for selecting individual examinees, and consistently estimating item parameters in the presence of error in the design points, sequential procedures are efficient for on-line item calibration. The estimating error in the on-line ability values is accounted for with an item parameter estimate studied by Stefanski and Carroll. LocallyD-optimaln-point designs are derived using the branch-and-bound algorithm of Welch. In simulations, the overall sequential designs appear to be considerably more efficient than random seeding of items.

[1]  C. David Vale,et al.  Linking Item Parameters Onto a Common Scale , 1986 .

[2]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[3]  Changbao Wu,et al.  Asymptotic inference from sequential design in a nonlinear situation , 1985 .

[4]  Frederic M. Lord Tailored Testing, an Application of Stochastic Approximation , 1971 .

[5]  L. Haines The application of the annealing algorithm to the construction of exact optimal designs for linear-regression models , 1987 .

[6]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[7]  Martha L. Stocking,et al.  Specifying optimum examinees for item parameter estimation in item response theory , 1990 .

[8]  D. Titterington,et al.  Inference and sequential design , 1985 .

[9]  D. M. Titterington,et al.  Recent advances in nonlinear experiment design , 1989 .

[10]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[11]  Frederic M. Lord,et al.  AN INVESTIGATION OF METHODS FOR REDUCING SAMPLING ERROR IN CERTAIN IRT PROCEDURES , 1983 .

[12]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[13]  W. Welch Branch-and-Bound Search for Experimental Designs Based on D Optimality and Other Criteria , 1982 .

[14]  Willem J. van der Linden,et al.  Optimality of sampling designs in item response theory models , 1991 .

[15]  G. Box,et al.  A Basis for the Selection of a Response Surface Design , 1959 .

[16]  Anthony C. Atkinson,et al.  An adjustment algorithm for the construction of exact- D -optimum experimental designs , 1988 .

[17]  Raymond J. Carroll,et al.  Covariate Measurement Error in Logistic Regression , 1985 .

[18]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[19]  M. Berger,et al.  On the Efficiency of IRT Models When Applied to Different Sampling Designs , 1991 .