The role of particle shape in computational modelling of granular matter

[1]  Xiaowen Zhou,et al.  DEM-enriched contact approach for material point method , 2023, Computer Methods in Applied Mechanics and Engineering.

[2]  Linchong Huang,et al.  Morphology Characterization and Discrete Element Modeling of Coral Sand With Intraparticle Voids , 2023, SSRN Electronic Journal.

[3]  S. Luding,et al.  Concurrent multi-scale modeling of granular materials: Role of coarse-graining in FEM-DEM coupling , 2023, Computer Methods in Applied Mechanics and Engineering.

[4]  Y. T. Feng,et al.  Thirty years of developments in contact modelling of non-spherical particles in DEM: a selective review , 2023, Acta Mechanica Sinica.

[5]  Jidong Zhao,et al.  Multiscale modeling of freeze-thaw behavior in granular media , 2022, Acta Mechanica Sinica.

[6]  S. Luding,et al.  The permeability of pillar arrays in microfluidic devices: an application of Brinkman's theory towards wall friction , 2022, Soft matter.

[7]  Mark W. Tibbitt,et al.  Building block properties govern granular hydrogel mechanics through contact deformations , 2022, Science advances.

[8]  Jidong Zhao,et al.  Leveraging ray tracing cores for particle‐based simulations on GPUs , 2022, International Journal for Numerical Methods in Engineering.

[9]  A. Martini,et al.  Atomistic Simulations of the Elastic Compression of Platinum Nanoparticles , 2022, Nanoscale Research Letters.

[10]  G. Ori,et al.  Reversible assembly of nanoparticles: theory, strategies and computational simulations. , 2022, Nanoscale.

[11]  Kun Liu,et al.  Liquid-crystalline behavior on dumbbell-shaped colloids and the observation of chiral blue phases , 2022, Nature Communications.

[12]  Jidong Zhao,et al.  Multiscale modeling of coupled thermo-mechanical behavior of granular media in large deformation and flow , 2022, Computers and Geotechnics.

[13]  Linchong Huang,et al.  Signed distance field framework for unified DEM modeling of granular media with arbitrary particle shapes , 2022, Computational Mechanics.

[14]  F. De Angelis,et al.  Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics , 2022, Chemical science.

[15]  B. Klein,et al.  A voxel-based clump generation method used for DEM simulations , 2022, Granular Matter.

[16]  Shuai Wang,et al.  Estimation of the Fluidization Behavior of Nonspherical Wet Particles with Liquid Transfer , 2022, Industrial & Engineering Chemistry Research.

[17]  Xi Gao,et al.  Coarse-Grained DEM–CFD Simulation of Fluidization Behavior of Irregular Shape Sand Particles , 2022, Industrial & Engineering Chemistry Research.

[18]  P. Kočí,et al.  Hybrid fictitious domain-immersed boundary solver coupled with discrete element method for simulations of flows laden with arbitrarily-shaped particles , 2022, Computers & Fluids.

[19]  Mohamed-Amine Chadil,et al.  Comparison of methods computing the distance between two ellipsoids , 2022, J. Comput. Phys..

[20]  Thomas M. M. Heenan,et al.  Asphericity Can Cause Nonuniform Lithium Intercalation in Battery Active Particles , 2022, ACS Energy Letters.

[21]  A. Vernet,et al.  Shape evolution of long flexible fibers in viscous flows , 2022, Acta Mechanica.

[22]  G. Wang,et al.  “Touch‐aware” contact model for peridynamics modeling of granular systems , 2022, International Journal for Numerical Methods in Engineering.

[23]  G. Piton,et al.  Debris Flows, Boulders and Constrictions: A Simple Framework for Modeling Jamming, and Its Consequences on Outflow , 2022, Journal of Geophysical Research: Earth Surface.

[24]  B. Nestler,et al.  A phase‐field based model for coupling two‐phase flow with the motion of immersed rigid bodies , 2022, International Journal for Numerical Methods in Engineering.

[25]  J. Voss,et al.  Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves , 2022, Physics of Fluids.

[26]  U. Rüde,et al.  Comparison of a finite volume and two Lattice Boltzmann solvers for swirled confined flows , 2022, Computers & Fluids.

[27]  G. Moutsanidis,et al.  A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture , 2022, Computer Methods in Applied Mechanics and Engineering.

[28]  Ling Yang,et al.  A review of analytical methods and models used in atmospheric microplastic research. , 2022, The Science of the total environment.

[29]  M. Sommerfeld,et al.  Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers , 2022, Powder Technology.

[30]  P. Schurtenberger,et al.  Shape Matters in Magnetic-Field-Assisted Assembly of Prolate Colloids , 2022, ACS nano.

[31]  M. Sakai,et al.  Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer , 2022, Chemical Engineering Journal.

[32]  Sheng Chen,et al.  Drag and lift forces acting on linear and irregular agglomerates formed by spherical particles , 2022, Physics of Fluids.

[33]  Lanhao Zhao,et al.  A three-dimensional deformable spheropolyhedral-based discrete element method for simulation of the whole fracture process , 2022, Engineering Fracture Mechanics.

[34]  X. Ku,et al.  Fluidization of the spherocylindrical particles: Comparison of multi-sphere and bond-sphere models , 2022, Chemical Engineering and Science.

[35]  D. Anand,et al.  A dissipative particle dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel , 2022, Computational Particle Mechanics.

[36]  S. Abel,et al.  Membrane-mediated interactions between hinge-like particles , 2022, bioRxiv.

[37]  Qiao Wang,et al.  A predictive deep learning framework for path-dependent mechanical behavior of granular materials , 2022, Acta Geotechnica.

[38]  F. Smallenburg Efficient event-driven simulations of hard spheres , 2022, The European Physical Journal E.

[39]  C. Choi,et al.  Improved Settling Velocity for Microplastic Fibers: A New Shape-Dependent Drag Model. , 2021, Environmental science & technology.

[40]  Peter Wriggers,et al.  Flexible polyhedra modeled by the virtual element method in a discrete element context , 2021, Computer Methods in Applied Mechanics and Engineering.

[41]  Peter Wriggers,et al.  Contact between rigid convex NURBS particles based on computer graphics concepts , 2021, Computer Methods in Applied Mechanics and Engineering.

[42]  F. Stillinger,et al.  Characterization of void space, large-scale structure, and transport properties of maximally random jammed packings of superballs , 2021, Physical Review Materials.

[43]  Du-min Kuang,et al.  A discrete element method (DEM)-based approach to simulating particle breakage , 2021, Acta Geotechnica.

[44]  Qiushi Chen,et al.  Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles , 2021, International Journal for Numerical and Analytical Methods in Geomechanics.

[45]  L. Fan,et al.  A machine learning-based interaction force model for non-spherical and irregular particles in low Reynolds number incompressible flows , 2021 .

[46]  G. Limbert,et al.  Immersed boundary simulations of flows driven by moving thin membranes , 2021, J. Comput. Phys..

[47]  A. Wachs,et al.  Granular avalanches of entangled rigid particles , 2021, Physical Review Fluids.

[48]  Tao Cui,et al.  Determination and interpretation of bonded-particle model parameters for simulation of maize kernels , 2021, Biosystems Engineering.

[49]  P. Mora,et al.  Damage separation model: A replaceable particle method based on strain energy field. , 2021, Physical review. E.

[50]  A. Menges,et al.  Designing architectural materials: from granular form to functional granular material , 2021, Bioinspiration & biomimetics.

[51]  Cédric Galusinski,et al.  A Level Set-Discrete Element Method in YADE for numerical, micro-scale, geomechanics with refined grain shapes , 2021, Computers & Geosciences.

[52]  Martin C. Herbordt,et al.  System-Level Modeling of GPU/FPGA Clusters for Molecular Dynamics Simulations , 2021, 2021 IEEE High Performance Extreme Computing Conference (HPEC).

[53]  Jian Gong,et al.  DEM study on the microscale and macroscale shear behaviours of granular materials with breakable and irregularly shaped particles , 2021 .

[54]  J. Yang,et al.  Wave propagation in granular material: what is the role of particle shape? , 2021, Journal of the Mechanics and Physics of Solids.

[55]  F. Toschi,et al.  Drag and lift coefficients of ellipsoidal particles under rarefied flow conditions. , 2021, Physical review. E.

[56]  J. Andrade,et al.  Structured fabrics with tunable mechanical properties , 2021, Nature.

[57]  Xiang Wang,et al.  A spherical‐harmonic‐based approach to discrete element modeling of 3D irregular particles , 2021, International Journal for Numerical Methods in Engineering.

[58]  Tiegen Liu,et al.  Characterization of particle size and shape by an IPI system through deep learning , 2021, Journal of Quantitative Spectroscopy and Radiative Transfer.

[59]  Masahide Otsubo,et al.  CLUMP: A Code Library to generate Universal Multi-sphere Particles , 2021, SoftwareX.

[60]  S. Jabeen,et al.  Numerical study of general shape particles in a concentric annular duct having inner obstacle , 2021, Computational Particle Mechanics.

[61]  A. Kwade,et al.  A bi-directional DEM-PBM coupling to evaluate chipping and abrasion of pharmaceutical tablets , 2021 .

[62]  Linchong Huang,et al.  A polybézier-based particle model for the DEM modeling of granular media , 2021, Computers and Geotechnics.

[63]  Volodymyr Kindratenko,et al.  Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations , 2021 .

[64]  Y.T. Feng,et al.  An effective energy-conserving contact modelling strategy for spherical harmonic particles represented by surface triangular meshes with automatic simplification , 2021 .

[65]  Peter Wriggers,et al.  Discrete element model for general polyhedra , 2021, Computational Particle Mechanics.

[66]  I. Kevrekidis,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[67]  Richard M. Lueptow,et al.  Predicting segregation of nonspherical particles , 2021 .

[68]  Yidong Xia,et al.  Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation , 2021 .

[69]  S. Luding,et al.  Elastic waves in particulate glass-rubber mixtures , 2021, Proceedings of the Royal Society A.

[70]  R. Yamamoto,et al.  Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles. , 2021, Soft matter.

[71]  Bingyin Zhang,et al.  A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape , 2021, Powder Technology.

[72]  H. Stark,et al.  A pair of particles in inertial microfluidics: effect of shape, softness, and position. , 2021, Soft matter.

[73]  M. Dijkstra,et al.  A generalized density-modulated twist-splay-bend phase of banana-shaped particles , 2021, Nature Communications.

[74]  Quirine Krol,et al.  Drag coefficient prediction of complex-shaped snow particles falling in air beyond the Stokes regime , 2021, International Journal of Multiphase Flow.

[75]  B. Vowinckel Incorporating grain-scale processes in macroscopic sediment transport models , 2021, Acta Mechanica.

[76]  Fan Yang,et al.  A new model for settling velocity of non-spherical particles , 2021, Environmental Science and Pollution Research.

[77]  S. A. Galindo-Torres,et al.  Metaball based discrete element method for general shaped particles with round features , 2021, Computational Mechanics.

[78]  S. Marrink,et al.  Simulating realistic membrane shapes. , 2021, Current opinion in cell biology.

[79]  F. Radjai,et al.  Modelling the compaction of plastic particle packings , 2021, Computational Particle Mechanics.

[80]  Jidong Zhao,et al.  SudoDEM: Unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles , 2021, Comput. Phys. Commun..

[81]  Luís Marcelo Tavares,et al.  A stochastic particle replacement strategy for simulating breakage in DEM , 2021 .

[82]  Chong Peng,et al.  A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape , 2021, Powder Technology.

[83]  K. Hanley,et al.  A hierarchical, spherical harmonic-based approach to simulate abradable, irregularly shaped particles in DEM , 2021, Powder Technology.

[84]  Y. Feng An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Basic framework and general contact model , 2021, Computer Methods in Applied Mechanics and Engineering.

[85]  X. Ku,et al.  Modeling and Simulation of the Motion and Gasification Behaviors of Superellipsoidal Biomass Particles in an Entrained-Flow Reactor , 2020, Energy & Fuels.

[86]  M. Morari,et al.  Characterizing Ensembles of Platelike Particles via Machine Learning , 2020, Industrial & Engineering Chemistry Research.

[87]  M. Renouf,et al.  Micromechanical description of the compaction of soft pentagon assemblies. , 2020, Physical review. E.

[88]  C. O’Hern,et al.  Bridging particle deformability and collective response in soft solids , 2020, Physical Review Materials.

[89]  J. Tu,et al.  Analysis of particle shape effect on the discharging of non-spherical particles in HTR-10 reactor core , 2020 .

[90]  Jie Wang,et al.  Shape matters: Morphologically biomimetic particles for improved drug delivery , 2020, Chemical Engineering Journal.

[91]  J. Harting,et al.  Capillary‐bridge forces between solid particles: Insights from lattice Boltzmann simulations , 2020, AIChE Journal.

[92]  W. Rogers,et al.  Development and validation of SuperDEM-CFD coupled model for simulating non-spherical particles hydrodynamics in fluidized beds , 2020 .

[93]  S. Haigh,et al.  Capillary condensation under atomic-scale confinement , 2020, Nature.

[94]  Jidong Zhao,et al.  Multiscale modeling of continuous crushing of granular media: the role of grain microstructure , 2020, Computational Particle Mechanics.

[95]  Kai Szuttor,et al.  The influence of motility on bacterial accumulation in a microporous channel. , 2020, Soft matter.

[96]  F. Y. Leong,et al.  Modeling deformable capsules in viscous flow using immersed boundary method , 2020 .

[97]  S. Galindo-Torres,et al.  Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows , 2020 .

[98]  B. Rogers,et al.  Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling , 2020, Proceedings of the Royal Society A.

[99]  S. Glotzer,et al.  A mean-field approach to simulating anisotropic particles. , 2020, The Journal of chemical physics.

[100]  Hongbo Zeng,et al.  Interactions of particulate matter and pulmonary surfactant: Implications for human health , 2020, Advances in Colloid and Interface Science.

[101]  Lu Liu,et al.  A new contact detection method for arbitrary dilated polyhedra with potential function in discrete element method , 2020, International Journal for Numerical Methods in Engineering.

[102]  S. Kondrat,et al.  Macromolecular Crowding: How Shape and Interactions Affect Diffusion. , 2020, The journal of physical chemistry. B.

[103]  Y. Lai,et al.  Multiscale modeling of thermo-mechanical responses of granular materials: A hierarchical continuum–discrete coupling approach , 2020 .

[104]  Nicholas E Brunk,et al.  Designing Surface Charge Patterns for Shape Control of Deformable Nanoparticles. , 2020, Physical review letters.

[105]  J. Andrade,et al.  Level set splitting in DEM for modeling breakage mechanics , 2020 .

[106]  D. Cantor,et al.  Microstructural analysis of sheared polydisperse polyhedral grains. , 2020, Physical review. E.

[107]  P. Tanga,et al.  The role of fragment shapes in the simulations of asteroids as gravitational aggregates , 2020, Icarus.

[108]  Hongyuan Jiang,et al.  Different-shaped micro-objects driven by active particle aggregations. , 2020, Soft matter.

[109]  F. Radjai,et al.  Scaling behavior of particle breakage in granular flows inside rotating drums. , 2020, Physical review. E.

[110]  S. Kantorovich,et al.  Self-assembly of charged colloidal cubes. , 2020, Soft matter.

[111]  Quan Sun,et al.  Clone granular soils with mixed particle morphological characteristics by integrating spherical harmonics with Gaussian mixture model, expectation–maximization, and Dirichlet process , 2020 .

[112]  B. Sun,et al.  Determination of the coefficient of rolling friction of irregularly shaped maize particles by using discrete element method , 2020, International Journal of Agricultural and Biological Engineering.

[113]  Philipp W. A. Schönhöfer,et al.  Self-assembly and entropic effects in pear-shaped colloid systems. II. Depletion attraction of pear-shaped particles in a hard-sphere solvent. , 2020, The Journal of chemical physics.

[114]  C. Hall,et al.  Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. , 2020, Soft matter.

[115]  Qiushi Chen,et al.  Fourier series-based discrete element method for computational mechanics of irregular-shaped particles , 2020, Computer Methods in Applied Mechanics and Engineering.

[116]  S. Obayashi,et al.  A simple collision algorithm for arbitrarily shaped objects in particle‐resolved flow simulation using an immersed boundary method , 2020, International Journal for Numerical Methods in Fluids.

[117]  C. N. Likos,et al.  Aggregation shapes of amphiphilic ring polymers: from spherical to toroidal micelles , 2020, Colloid and Polymer Science.

[118]  Y. Zhang,et al.  An extended parameter space study of the effect of cohesion in gravitational aggregates through spin-up simulations , 2020 .

[119]  H. Sakidin,et al.  Lattice Boltzmann application to nanofluids dynamics-A review , 2020 .

[120]  J. Voss,et al.  On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves , 2020, Nanoscale advances.

[121]  A. B. Yu,et al.  Effect of van der Waals force on bubble dynamics in bubbling fluidized beds of ellipsoidal particles , 2020 .

[122]  J. Fröhlich,et al.  Effect of particle shape on bedload sediment transport in case of small particle loading , 2020 .

[123]  A. Malthe-Sørenssen,et al.  Direct Atomic Simulations of Facet Formation and Equilibrium Shapes of SiC Nanoparticles , 2020 .

[124]  Junxing Zheng,et al.  Simulations of realistic granular soils in oedometer tests using physics engine , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[125]  Roland G Huber,et al.  Multiscale modelling and simulation of viruses. , 2020, Current opinion in structural biology.

[126]  B. Peters,et al.  A forcing fictitious domain method to simulate fluid-particle interaction of particles with super-quadric shape , 2020 .

[127]  Wenguang Nan,et al.  Cohesive Powder Flow: Trends and Challenges in Characterisation and Analysis , 2020, KONA Powder and Particle Journal.

[128]  Sheng Yan,et al.  Simulation on hydrodynamics of non-spherical particulate system using a drag coefficient correlation based on artificial neural network , 2019, Petroleum Science.

[129]  P. Fischer,et al.  Direct numerical simulation of rotating ellipsoidal particles using moving nonconforming Schwarz-spectral element method , 2019, 1912.04393.

[130]  M. Lavagna,et al.  A parallel-GPU code for asteroid aggregation problems with angular particles , 2019, Monthly Notices of the Royal Astronomical Society.

[131]  W. K. den Otter,et al.  Intrinsic viscosities of non-spherical colloids by Brownian dynamics simulations. , 2019, The Journal of chemical physics.

[132]  R. Winkler,et al.  Computational models for active matter , 2019, Nature Reviews Physics.

[133]  Greg van Anders,et al.  Shape and interaction decoupling for colloidal preassembly , 2019, Science advances.

[134]  S. Dey,et al.  Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics , 2019, Proceedings of the Royal Society A.

[135]  S. Luding,et al.  Sintering—Pressure- and Temperature-Dependent Contact Models , 2019, Particles in Contact.

[136]  Shiwei Zhao,et al.  A poly‐superellipsoid‐based approach on particle morphology for DEM modeling of granular media , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[137]  Yadong Yin,et al.  Smart Materials by Nanoscale Magnetic Assembly , 2019, Advanced Functional Materials.

[138]  Klaus Thoeni,et al.  An iterative Bayesian filtering framework for fast and automated calibration of DEM models , 2019, Computer Methods in Applied Mechanics and Engineering.

[139]  Jidong Zhao,et al.  Modeling continuous grain crushing in granular media: A hybrid peridynamics and physics engine approach , 2019, Computer Methods in Applied Mechanics and Engineering.

[140]  J. Nordbotten,et al.  A combined finite element–finite volume framework for phase-field fracture , 2019, Computer Methods in Applied Mechanics and Engineering.

[141]  C. O’Hern,et al.  The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. , 2019, Soft matter.

[142]  A. Wachs Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies , 2019, Acta Mechanica.

[143]  M. Villone,et al.  Dynamics, rheology, and applications of elastic deformable particle suspensions: a review , 2019, Rheologica Acta.

[144]  Jidong Zhao,et al.  Multiscale modeling of large deformation in geomechanics , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[145]  Eitan Grinspun,et al.  Hybrid grains , 2018, ACM Trans. Graph..

[146]  S. Luding,et al.  Hydro‐micromechanical modeling of wave propagation in saturated granular crystals , 2018, International Journal for Numerical and Analytical Methods in Geomechanics.

[147]  Richard A. Regueiro,et al.  Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm , 2018 .

[148]  Frédéric Dubois,et al.  The Contact Dynamics method: A nonsmooth story , 2017 .

[149]  F. Radjai,et al.  Three-dimensional bonded-cell model for grain fragmentation , 2017, CPM 2017.

[150]  M. Knepley,et al.  Efficient Evaluation of Ellipsoidal Harmonics for Potential Modeling , 2017, 1708.06028.

[151]  Lei Zhang,et al.  Particle shape effects on fabric of granular random packing , 2017 .

[152]  H. Hellmer,et al.  A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates , 2017 .

[153]  Adnan Ibrahimbegovic,et al.  Lattice Element Models and Their Peculiarities , 2017, Archives of Computational Methods in Engineering.

[154]  Jianfeng Wang,et al.  Generation of a realistic 3D sand assembly using X‐ray micro‐computed tomography and spherical harmonic‐based principal component analysis , 2017 .

[155]  P. Español,et al.  Perspective: Dissipative particle dynamics. , 2016, The Journal of chemical physics.

[156]  Aibing Yu,et al.  DEM/CFD-DEM Modelling of Non-spherical Particulate Systems: Theoretical Developments and Applications , 2016 .

[157]  Chwee Teck Lim,et al.  Particle-based simulations of red blood cells-A review. , 2016, Journal of biomechanics.

[158]  Ning Guo,et al.  Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils , 2016 .

[159]  J. Andrade,et al.  Level set discrete element method for three-dimensional computations with triaxial case study , 2016 .

[160]  Sharon C. Glotzer,et al.  Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units , 2016, Comput. Phys. Commun..

[161]  Rui M. L. Ferreira,et al.  SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows , 2016, Comput. Phys. Commun..

[162]  O. Baur,et al.  Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System bodies. Case study: Comet 67P/Churyumov‐Gerasimenko , 2016, 1610.06491.

[163]  C. Holm,et al.  Lattice-Boltzmann hydrodynamics of anisotropic active matter. , 2016, The Journal of chemical physics.

[164]  H. Jaeger,et al.  Aleatory architectures , 2015, 1510.05721.

[165]  Youssef M A Hashash,et al.  iDEM: An impulse‐based discrete element method for fast granular dynamics , 2015 .

[166]  Saeid Nezamabadi,et al.  Implicit frictional-contact model for soft particle systems , 2015 .

[167]  Xiaowen Zhou,et al.  Discrete element simulations of direct shear tests with particle angularity effect , 2015 .

[168]  Farhang Radjai,et al.  Bonded-cell model for particle fracture. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[169]  V. Richefeu,et al.  Liquid clustering and capillary pressure in granular media , 2014, Journal of Fluid Mechanics.

[170]  Jidong Zhao,et al.  3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors , 2014 .

[171]  Jan Eliáš,et al.  Simulation of railway ballast using crushable polyhedral particles , 2014 .

[172]  Robert W. Zimmerman,et al.  An impulse-based energy tracking method for collision resolution , 2014 .

[173]  D. Wolf,et al.  Recent advances in the simulation of particle-laden flows , 2014, The European Physical Journal Special Topics.

[174]  D. Ramkrishna,et al.  Population balance modeling: current status and future prospects. , 2014, Annual review of chemical and biomolecular engineering.

[175]  J. Andrade,et al.  On the contact treatment of non-convex particles in the granular element method , 2014 .

[176]  A. Colagrossi,et al.  Nonlinear water wave interaction with floating bodies in SPH , 2013 .

[177]  Farhang Radjai,et al.  Packings of irregular polyhedral particles: strength, structure, and effects of angularity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[178]  Roberto Ballarini,et al.  A distinct element method for large scale simulations of carbon nanotube assemblies , 2013 .

[179]  Guilhem Mollon,et al.  Generating realistic 3D sand particles using Fourier descriptors , 2013 .

[180]  S. Luding,et al.  Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation , 2013, 1301.0752.

[181]  F. Radjai,et al.  Tensile strength and fracture of cemented granular aggregates , 2012, The European Physical Journal E.

[182]  Matthew G. Knepley,et al.  Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory , 2012, ArXiv.

[183]  Glenn R. McDowell,et al.  Modelling realistic shape and particle inertia in DEM , 2010 .

[184]  Paul W. Cleary,et al.  The packing properties of superellipsoids , 2010 .

[185]  John F. Peters,et al.  A poly‐ellipsoid particle for non‐spherical discrete element method , 2009 .

[186]  Vincent Richefeu,et al.  Contact dynamics as a nonsmooth discrete element method , 2009 .

[187]  F. Radjai,et al.  Failure of cemented granular materials under simple compression: experiments and numerical simulations , 2009 .

[188]  F. Radjai,et al.  Mechanical modeling of wheat hardness and fragmentation , 2009 .

[189]  K Ann McKibbon,et al.  Current status and future prospects. , 2008, Health information and libraries journal.

[190]  S. Luding Introduction to discrete element methods , 2008 .

[191]  Peter Wriggers,et al.  A contact detection algorithm for superellipsoids based on the common-normal concept , 2008 .

[192]  Fernando Alonso-Marroquin,et al.  Spheropolygons: A new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies , 2008 .

[193]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[194]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[195]  Dawei Zhao,et al.  A fast contact detection algorithm for 3-D discrete element method , 2004 .

[196]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[197]  Eugene Wong,et al.  A dual approach to detect polyhedral intersections in arbitrary dimensions , 1991, BIT.

[198]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[199]  P. A. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART I. A SCHEME TO DETECT AND REPRESENT CONTACTS IN A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[200]  James K. Hahn,et al.  Realistic animation of rigid bodies , 1988, SIGGRAPH.

[201]  L. Golberg Implications for human health. , 1979, Environmental health perspectives.

[202]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[203]  J. Tu,et al.  Discrete element-embedded finite element model for simulation of soft particle motion and deformation , 2022, Particuology.

[204]  Yiwu Zong,et al.  Manipulation of self-assembled structures by shape-designed polygonal colloids in 2D , 2022, Current Opinion in Solid State and Materials Science.

[205]  Hari S. Viswanathan,et al.  A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media , 2021, J. Comput. Phys..

[206]  S. Rahmati,et al.  Deformation of copper particles upon impact: A molecular dynamics study of cold spray , 2020 .

[207]  H. Woodrow,et al.  : A Review of the , 2018 .

[208]  Donald J. Reichard,et al.  A SELECTIVE REVIEW , 2007 .

[209]  M. Seaton Dissipative Particle Dynamics , 2006 .