IRIM at TRECVID 2017: Instance Search

The IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2017 instance search task.

[1]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[2]  Stefan Winkler,et al.  A data-driven approach to cleaning large face datasets , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[3]  Paul Over,et al.  Instance search retrospective with focus on TRECVID , 2017, International Journal of Multimedia Information Retrieval.

[4]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[5]  Davis E. King,et al.  Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..

[6]  Georges Quénot,et al.  TRECVID 2017: Evaluating Ad-hoc and Instance Video Search, Events Detection, Video Captioning and Hyperlinking , 2017, TRECVID.

[7]  Shin'ichi Satoh,et al.  Query-Adaptive Asymmetrical Dissimilarities for Visual Object Retrieval , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Gregory Gelly,et al.  Improving Speaker Diarization of TV Series using Talking-Face Detection and Clustering , 2016, ACM Multimedia.

[9]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Makarand Tapaswi,et al.  StoryGraphs: Visualizing Character Interactions as a Timeline , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[12]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[13]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Bolei Zhou,et al.  Places: A 10 Million Image Database for Scene Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Adrian Popescu,et al.  Harnessing noisy Web images for deep representation , 2017, Comput. Vis. Image Underst..

[16]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[17]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Adrian Popescu,et al.  Vision-language integration using constrained local semantic features , 2017, Comput. Vis. Image Underst..

[19]  Shin'ichi Satoh,et al.  A practical spatial re-ranking method for instance search from videos , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[20]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[22]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  William J. Christmas,et al.  A Study on Automatic Shot Change Detection , 1998, ECMAST.

[24]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[25]  Georges Quénot,et al.  IRIM at TRECVID 2016: Instance Search , 2016, TRECVID.