Comparing models of symbolic music using probabilistic grammars and probabilistic programming

We conduct a systematic comparison of several probabilistic models of symbolic music, including zeroth and first order Markov models over pitches and intervals, a hidden Markov model over pitches, and a probabilistic context free grammar with two parameterisations, all implemented uniformly using a probabilistic programming language (PRISM). This allows us to take advantage of variational Bayesian methods for learning parameters and assessing the goodness of fit of the models in a principled way. When applied to a corpus of Bach chorales and the Essen folk song collection, we show that, depending on various parameters, the probabilistic grammars sometimes but not always out-perform the simple Markov models. On looking for evidence of over- fitting of complex models to small datasets, we find that even the smallest dataset is sufficient to support the richest parameterisation of the probabilistic grammars. However, examining how the models perform on smaller subsets of pieces, we find that the simpler Markov models do indeed out-perform the best grammar-based model at the small end of the scale.

[1]  Rens Bod Probabilistic grammars for music , 2001 .

[2]  Phillip B. Kirlin,et al.  A Probabilistic Model of Hierarchical Music Analysis , 2014, ISMIR 2014.

[3]  Harry H. Porter Earley Deduction , 1986 .

[4]  Édouard Gilbert,et al.  A Probabilistic Context-Free Grammar for Melodic Reduction ? , 2007 .

[5]  David A. McAllester,et al.  Effective Bayesian Inference for Stochastic Programs , 1997, AAAI/IAAI.

[6]  Kenichi Kurihara,et al.  Variational Bayesian Grammar Induction for Natural Language , 2006, ICGI.

[7]  Mark Granroth-Wilding,et al.  Harmonic analysis of music using combinatory categorial grammar , 2013 .

[8]  Leonard B. Meyer Emotion and Meaning in Music , 1957 .

[9]  Jon Sneyers,et al.  Probabilistic-Logical Modeling of Music , 2006, PADL.

[10]  Kemal Ebcioglu,et al.  An Expert System for Harmonizing Four-Part Chorales , 1988, ICMC.

[11]  Eric Brill,et al.  Beyond N-Grams: Can Linguistic Sophistication Improve Language Modeling? , 1998, COLING-ACL.

[12]  David L. Dowe,et al.  Bayes not Bust! Why Simplicity is no Problem for Bayesians1 , 2007, The British Journal for the Philosophy of Science.

[13]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[14]  Neng-Fa Zhou,et al.  Generative Modeling with Failure in PRISM , 2005, IJCAI.

[15]  Heinrich Schenker,et al.  Der freie Satz , 1935 .

[16]  Phillip B. Kirlin,et al.  Probabilistic Modeling of Hierarchical Music Analysis , 2011, ISMIR.

[17]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine-mediated learning.

[18]  Kenichi Kurihara,et al.  Variational Bayes via propositionalized probability computation in PRISM , 2008, Annals of Mathematics and Artificial Intelligence.

[19]  Terry Winograd,et al.  Linguistics and the computer analysis of tonal harmony , 1968 .

[20]  Yee Whye Teh,et al.  A stochastic memoizer for sequence data , 2009, ICML '09.

[21]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[22]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[23]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[24]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[25]  Martin Rohrmeier,et al.  Towards a generative syntax of tonal harmony , 2011 .

[26]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[27]  Jonathan J. Oliver,et al.  MDL and MML: Similarities and differences , 1994 .

[28]  Chung-chieh Shan,et al.  Embedded Probabilistic Programming , 2009, DSL.

[29]  Masataka Goto,et al.  A Vocabulary-Free Infinity-Gram Model for Nonparametric Bayesian Chord Progression Analysis , 2011, ISMIR.

[30]  Michael Kassler A trinity of essays : Toward a theory that is the twelve-note-class system, Toward development of a constructive tonality theory based on writings by Heinrich Schenker, Toward a simple programming language for musical imformation retrieval , 1967 .

[31]  Lydia D. Goehr On the Musically Beautiful: A Contribution Towards the Revision of the Aesthetics of Music , 1987 .

[32]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[33]  Jason Yust The Geometry of Melodic, Harmonic, and Metrical Hierarchy , 2009 .

[34]  Matthew Brown,et al.  PARSING CONTEXT-FREE GRAMMARS FOR MUSIC: A COMPUTATIONAL MODEL OF SCHENKERIAN ANALYSIS , 2004 .

[35]  Mark Steedman,et al.  A Generative Grammar for Jazz Chord Sequences , 1984 .

[36]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[37]  Avi Pfeffer,et al.  IBAL: A Probabilistic Rational Programming Language , 2001, IJCAI.

[38]  Alan Marsden,et al.  Schenkerian Analysis by Computer: A Proof of Concept , 2010 .

[39]  Taisuke Sato,et al.  A Separate-and-Learn Approach to EM Learning of PCFGs , 2001, NLPRS.

[40]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[41]  B. Lindblom,et al.  Towards a generative theory of melody , 2007 .

[42]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[43]  S. Muggleton Stochastic Logic Programs , 1996 .

[44]  Célestin Deliège À propos de l’ouvrage de Lerdahl et Jackendoff : « A Generative Theory of Tonal Music » , 1983 .

[45]  David L. Poole,et al.  Representing Bayesian Networks Within Probabilistic Horn Abduction , 1991, UAI.

[46]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .