A Review on Visualization Recommendation Strategies

Choosing the best visualization of a given dataset becomes more and more complex as not only the amount of data, but also the number of visualization types and the number of potential uses of visualizations grow tremendously. This challenge has spurred on the research into visualization recommendation systems. The ultimate aim of such a system is the suggestion of visualizations which provide interesting insights into the data. It should ideally consider data characteristics, domain knowledge and individual preferences to produce aesthetically appealing and easy to understand charts. Based on the mentioned factors, we have reviewed in this paper the state-of-the-art in visualization recommendation systems starting from the earliest attempt made on this subject. We identify challenges to visualization and visualization recommendation to guide future research directions.

[1]  Min Chen,et al.  From Web Data to Visualization via Ontology Mapping , 2008, Comput. Graph. Forum.

[2]  Chaomei Chen,et al.  Top 10 Unsolved Information Visualization Problems , 2005, IEEE Computer Graphics and Applications.

[3]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[4]  Pat Hanrahan,et al.  VizQL: a language for query, analysis and visualization , 2006, SIGMOD Conference.

[5]  Clayton Lewis,et al.  A problem-oriented classification of visualization techniques , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[6]  Klaus Meißner,et al.  Towards a Semantics-Based, End-User-Centered Information Visualization Process , 2012 .

[7]  Christoph Trattner,et al.  VizRec , 2016 .

[8]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[9]  Aditya G. Parameswaran,et al.  Towards Visualization Recommendation Systems , 2016, SGMD.

[10]  Cristina Conati,et al.  User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities , 2013, IUI '13.

[11]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[12]  Ben Shneiderman Dynamic queries, starfield displays, and the path to Spotfire , 2005 .

[13]  Johanna D. Moore,et al.  AutoBrief: a multimedia presentation system for assisting data analysis , 1997, Comput. Stand. Interfaces.

[14]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[15]  D. M. Klumpar,et al.  RAVE: Rapid Visualization Environment , 1994 .

[16]  Gilles Venturini,et al.  VizAssist: an interactive user assistant for visual data mining , 2016, The Visual Computer.

[17]  Zhen Wen,et al.  Behavior-driven visualization recommendation , 2009, IUI.

[18]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[19]  Daniel Perry,et al.  VizDeck: self-organizing dashboards for visual analytics , 2012, SIGMOD Conference.

[20]  Steven F. Roth,et al.  Data characterization for intelligent graphics presentation , 1990, CHI '90.

[21]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[22]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[23]  Steven K. Feiner,et al.  Visual task characterization for automated visual discourse synthesis , 1998, CHI.

[24]  Martin Wattenberg,et al.  ManyEyes: a Site for Visualization at Internet Scale , 2007, IEEE Transactions on Visualization and Computer Graphics.