Titanium dioxide nanostructures for photoelectrochemical applications

[1]  Pawan Kumar,et al.  Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting , 2018, Carbon.

[2]  K. Ramamurthi,et al.  Influence of heat treatment on the properties of hydrothermally grown 3D/1D TiO2 hierarchical hybrid microarchitectures over TiO2 seeded FTO substrates , 2018, Applied Surface Science.

[3]  L. Schmidt‐Mende,et al.  Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO 2 nanorod arrays , 2018, Journal of Crystal Growth.

[4]  J. Jang,et al.  Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO 2 nanorod arrays: Effects of the light trapping and optimum charge transfer , 2018 .

[5]  Jinhua Ye,et al.  Three-Dimensional Lupinus-like TiO2 Nanorod@Sn3O4 Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. , 2017, ACS applied materials & interfaces.

[6]  L. Schmidt‐Mende,et al.  Tuning the Electronic Conductivity in Hydrothermally Grown Rutile TiO2 Nanowires: Effect of Heat Treatment in Different Environments , 2017, Nanomaterials.

[7]  G. Nowaczyk,et al.  Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots , 2017 .

[8]  J. Jang,et al.  Facile Hydrothermally Synthesized a Novel CdS Nanoflower/Rutile-TiO2 Nanorod Heterojunction Photoanode Used for Photoelectrocatalytic Hydrogen Generation , 2017 .

[9]  Qinglong Liu,et al.  Synergistic Effect of Si Doping and Heat Treatments Enhances the Photoelectrochemical Water Oxidation Performance of TiO2 Nanorod Arrays , 2017 .

[10]  Yajun Wang,et al.  AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: High efficient separation of photogenerated charge carriers , 2017 .

[11]  Jie Wang,et al.  Highly selective aerobic oxidation of biomass alcohol to benzaldehyde by an in situ doped Au/TiO2 nanotube photonic crystal photoanode for simultaneous hydrogen production promotion , 2017 .

[12]  R. Zbořil,et al.  Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication , 2017 .

[13]  Yue Zhang,et al.  Carbon Quantum Dots Decorated C3N4/TiO2 Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance , 2017 .

[14]  Xudong Wang,et al.  Surface-Plasmon-Resonance-Enhanced Photoelectrochemical Water Splitting from Au-Nanoparticle-Decorated 3D TiO2 Nanorod Architectures , 2017 .

[15]  H. Misawa,et al.  Water splitting using a three-dimensional plasmonic photoanode with titanium dioxide nano-tunnels , 2017 .

[16]  Dong Ha Kim,et al.  Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting. , 2017, ACS applied materials & interfaces.

[17]  A. Fujishima,et al.  α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. , 2017, Nanoscale.

[18]  Yi‐Jun Xu,et al.  Decorating geometry- and size-controlled sub-20 nm Pd nanocubes onto 2D TiO2 nanosheets for simultaneous H2 evolution and 1,1-diethoxyethane production , 2016 .

[19]  Swagotom Sarker,et al.  Engineered Solution-Liquid-Solid Growth of a "Treelike" 1D/1D TiO2 Nanotube-CdSe Nanowire Heterostructure: Photoelectrochemical Conversion of Broad Spectrum of Solar Energy. , 2016, ACS applied materials & interfaces.

[20]  Zhenzhen Li,et al.  Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO2 Nanotube Photonic Crystals. , 2016, ACS applied materials & interfaces.

[21]  Junhu Zhou,et al.  CO2 Synergistic Reduction in a Photoanode-Driven Photoelectrochemical Cell with a Pt-Modified TiO2 Nanotube Photoanode and a Pt Reduced Graphene Oxide Electrocathode , 2016 .

[22]  Guohua Chen,et al.  Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity , 2016 .

[23]  B. Zhang,et al.  ZnFe2 O4 Leaves Grown on TiO2 Trees Enhance Photoelectrochemical Water Splitting. , 2016, Small.

[24]  Q. Wei,et al.  Plasmon enhanced photoelectrochemical sensing of mercury (II) ions in human serum based on Au@Ag nanorods modified TiO₂ nanosheets film. , 2016, Biosensors & bioelectronics.

[25]  Gengfeng Zheng,et al.  Photoelectrochemical Conversion from Graphitic C3N4 Quantum Dot Decorated Semiconductor Nanowires. , 2016, ACS applied materials & interfaces.

[26]  Yajun Zhang,et al.  Glucose oxidation over ultrathin carbon-coated perovskite modified TiO2 nanotube photonic crystals with high-efficiency electron generation and transfer for photoelectrocatalytic hydrogen production , 2016 .

[27]  N. Lewis,et al.  Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation , 2016 .

[28]  Yuxiao Cheng,et al.  Lithium ion intercalation of 3-D vertical hierarchical TiO2 nanotubes on a titanium mesh for efficient photoelectrochemical water splitting. , 2016, Chemical communications.

[29]  L. Qi,et al.  Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. , 2016, Small.

[30]  C. Grimes,et al.  Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide , 2016 .

[31]  Dan Zhao,et al.  Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells , 2016 .

[32]  Guihua Li,et al.  Influence of Ag-Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts. , 2016, Journal of colloid and interface science.

[33]  Lin Wang,et al.  Enhanced photoelectrochemical aptasensing platform for TXNDC5 gene based on exciton energy transfer between NCQDs and TiO2 nanorods , 2016, Scientific Reports.

[34]  P. Yeh,et al.  Tandem Structure of QD Cosensitized TiO2 Nanorod Arrays for Solar Light Driven Hydrogen Generation , 2016 .

[35]  Zhixiong Cai,et al.  Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets , 2015 .

[36]  Chuanwei Cheng,et al.  Three-Dimensional CdS-Sensitized Sea Urchin Like TiO2-Ordered Arrays as Efficient Photoelectrochemical Anodes , 2015 .

[37]  A. Morozan,et al.  Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices , 2015 .

[38]  Peng Lu,et al.  Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets , 2015 .

[39]  Jun He,et al.  Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. , 2015, Nanoscale.

[40]  Chang Woo Kim,et al.  A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction , 2015 .

[41]  J. Jang,et al.  Fabrication of a ternary CdS/ZnIn2S4/TiO2 heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer , 2015 .

[42]  K. Sopian,et al.  Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. , 2015, Chemical Society reviews.

[43]  Hui‐Ming Cheng,et al.  Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation , 2015 .

[44]  Xin Li,et al.  A three-dimensional interconnected hierarchical FeOOH/TiO₂/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation. , 2015, Nanoscale.

[45]  Tae Woo Kim,et al.  Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. , 2015, Chemical reviews.

[46]  Sandeep Kumar Pathak,et al.  Doping of TiO2 for sensitized solar cells. , 2015, Chemical Society reviews.

[47]  Weitang Yao,et al.  One-step hydrothermal synthesis of iron and nitrogen co-doped TiO2 nanotubes with enhanced visible-light photocatalytic activity , 2015 .

[48]  W. Sigmund,et al.  Electronic Property Dependence of Electrochemical Performance for TiO2/CNT Core-shell Nanofibers in Lithium Ion Batteries , 2015 .

[49]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[50]  Lianzhou Wang,et al.  A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting , 2015 .

[51]  Ian D. Sharp,et al.  Interfacial band-edge energetics for solar fuels production , 2015 .

[52]  Swagata Banerjee,et al.  Self-Cleaning Applications of TiO2 by Photo-Induced Hydrophilicity and Photocatalysis , 2015 .

[53]  R. Caruso,et al.  High-Throughput Synthesis and Screening of Titania-Based Photocatalysts. , 2015, ACS combinatorial science.

[54]  John T. S. Irvine,et al.  Organic Semiconductor g‐C3N4 Modified TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Performance in Wastewater Treatment , 2015 .

[55]  Tuo Wang,et al.  Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting , 2015, Advanced materials.

[56]  E. Sánchez,et al.  Comparative study of Sb2S3, Bi2S3 and In2S3 thin film deposition on TiO2 by successive ionic layer adsorption and reaction (SILAR) method , 2015 .

[57]  H. Yang,et al.  Crystal shape engineering of anatase TiO2 and its biomedical applications , 2015 .

[58]  G. Luo,et al.  Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation , 2015 .

[59]  Jong Hyeok Park,et al.  Highly Transparent Dual-Sensitized Titanium Dioxide Nanotube Arrays for Spontaneous Solar Water Splitting Tandem Configuration. , 2015, ACS applied materials & interfaces.

[60]  P. Lund,et al.  Physical Modeling of Photoelectrochemical Hydrogen Production Devices , 2015 .

[61]  Zhaosheng Li,et al.  Solar fuel production: Strategies and new opportunities with nanostructures , 2015 .

[62]  Xudong Xiao,et al.  Recent progress in photocathodes for hydrogen evolution , 2015 .

[63]  Jun Wang,et al.  Performance improvement by using ammonia water-synthesized TiO2 nanotubes with nanowire porous film mixed nanostructures , 2015 .

[64]  Zongping Shao,et al.  Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. , 2015, Chemical Society reviews.

[65]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[66]  Zhifeng Liu,et al.  Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers , 2015 .

[67]  Huijun Zhao,et al.  Photoelectrochemical manifestation of intrinsic photoelectron transport properties of vertically aligned {001} faceted single crystal TiO2 nanosheet films , 2015 .

[68]  Ratnawati,et al.  Development of titania nanotube arrays: The roles of water content and annealing atmosphere , 2015 .

[69]  Shanmin Gao,et al.  Fabrication of CuInSe2 quantum dots sensitized TiO2 nanotube arrays for enhancing visible light photoelectrochemical performance , 2015 .

[70]  Jianzhong Liu,et al.  A Cu foam cathode used as a Pt–RGO catalyst matrix to improve CO2 reduction in a photoelectrocatalytic cell with a TiO2 photoanode , 2015 .

[71]  Bin Zhang,et al.  Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: progress and challenges , 2015 .

[72]  William W. Yu,et al.  Photoelectrochemical Properties of CdS/CdSe Sensitized TiO2 Nanocable Arrays , 2015 .

[73]  Mahesh Datt Bhatt,et al.  Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells , 2015 .

[74]  T. Do,et al.  Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. , 2015, Nanoscale.

[75]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[76]  Dan Song,et al.  Recent progress in enhancing solar-to-hydrogen efficiency , 2015 .

[77]  Wanzhen Xu,et al.  Recent progress in enhancing photocatalytic efficiency of TiO2-based materials , 2015 .

[78]  Ibram Ganesh,et al.  Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review) , 2015 .

[79]  Hong Liu,et al.  Structure, Synthesis, and Applications of TiO2 Nanobelts , 2015, Advanced materials.

[80]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[81]  S. Si,et al.  A highly selective photoelectrochemical biosensor for uric acid based on core-shell Fe3O4@C nanoparticle and molecularly imprinted TiO2. , 2015, Biosensors & bioelectronics.

[82]  Ze Yu,et al.  Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components , 2015 .

[83]  Zhengxiao Guo,et al.  Visible-light driven heterojunction photocatalysts for water splitting – a critical review , 2015 .

[84]  M. Chong,et al.  Prospects of metal-insulator-semiconductor (MIS) nanojunction structures for enhanced hydrogen evolution in photoelectrochemical cells: A review , 2015 .

[85]  S. Kamarudin,et al.  Hydrogen from photo-catalytic water splitting process: A review , 2015 .

[86]  Rencheng Jin,et al.  Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties , 2015 .

[87]  A. Rogach,et al.  Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries. , 2015, Small.

[88]  Jiangtian Li,et al.  Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review , 2015 .

[89]  Fei Wang,et al.  Nitrogen Doped 3D Titanium Dioxide Nanorods Architecture with Significantly Enhanced Visible Light Photoactivity , 2015 .

[90]  Hong Liu,et al.  Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. , 2015, Nanoscale.

[91]  Yuegang Zhang,et al.  Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production , 2015 .

[92]  Jiaguo Yu,et al.  Engineering heterogeneous semiconductors for solar water splitting , 2015 .

[93]  Yi Xie,et al.  Atomically-thin two-dimensional sheets for understanding active sites in catalysis. , 2015, Chemical Society reviews.

[94]  Yun Wang,et al.  Photoelectrochemical determination of intrinsic kinetics of photoelectrocatalysis processes at {001} faceted anatase TiO2 photoanodes , 2015 .

[95]  Y. Tong,et al.  Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity , 2015 .

[96]  S. Nishanthi,et al.  Plasmonic silver nanoparticles loaded titania nanotube arrays exhibiting enhanced photoelectrochemical and photocatalytic activities , 2015 .

[97]  T. Do,et al.  Tailoring the assembly, interfaces, and porosity of nanostructures toward enhanced catalytic activity. , 2015, Chemical communications.

[98]  Zhuoyuan Chen,et al.  Enhanced photoelectrochemical performance of the hierarchical micro/nano-structured TiO2 mesoporous spheres with oxygen vacancies via hydrogenation , 2015 .

[99]  M. Saito,et al.  Trap-state passivation of titania nanotubes by electrochemical doping for enhanced photoelectrochemical performance , 2015 .

[100]  Y. Gan,et al.  Photoelectrochemical activities and low content Nb-doping effects on one-dimensional self-ordered Nb2O5–TiO2 nanotubes , 2015 .

[101]  Z. Wang,et al.  One-step synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis , 2015 .

[102]  A. Lycourghiotis,et al.  Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. , 2014, Chemical reviews.

[103]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[104]  R. Asahi,et al.  Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. , 2014, Chemical reviews.

[105]  N. Dimitrijević,et al.  Titanium dioxide in the service of the biomedical revolution. , 2014, Chemical reviews.

[106]  Yi-sheng Liu,et al.  Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. , 2014, Chemical reviews.

[107]  T. Bein,et al.  Three-dimensional titanium dioxide nanomaterials. , 2014, Chemical reviews.

[108]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.

[109]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[110]  J. Banfield,et al.  Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2. , 2014, Chemical reviews.

[111]  Yadong Yin,et al.  Composite titanium dioxide nanomaterials. , 2014, Chemical reviews.

[112]  Fumin Li,et al.  Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes , 2014, Journal of Materials Science.

[113]  Matteo Cargnello,et al.  Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. , 2014, Chemical reviews.

[114]  Akira Fujishima,et al.  Bio-inspired titanium dioxide materials with special wettability and their applications. , 2014, Chemical reviews.

[115]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: self-structural modifications. , 2014, Chemical reviews.

[116]  A. Selloni,et al.  Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. , 2014, Chemical reviews.

[117]  Jing Bai,et al.  Titanium dioxide nanomaterials for sensor applications. , 2014, Chemical reviews.

[118]  Jianmeng Chen,et al.  Photocatalytic Reduction of CO2 in Aqueous Solution on Surface-Fluorinated Anatase TiO2 Nanosheets with Exposed {001} Facets , 2014 .

[119]  Jian Pan,et al.  Titanium dioxide crystals with tailored facets. , 2014, Chemical reviews.

[120]  Lixia Sang,et al.  TiO2 nanoparticles as functional building blocks. , 2014, Chemical reviews.

[121]  Y. Chen,et al.  Crystallography and properties of polyoxotitanate nanoclusters. , 2014, Chemical reviews.

[122]  Lianzhou Wang,et al.  Titanium oxide nanosheets: graphene analogues with versatile functionalities. , 2014, Chemical reviews.

[123]  K. Chattopadhyay,et al.  Hierarchical TiO2 Nanowire Over Pabric Platform: Potential Candidate for Wearable Field Emitter and Photocatalyst , 2014 .

[124]  Jian Shi,et al.  One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.

[125]  Chenghua Sun,et al.  Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries , 2014 .

[126]  D. Kang,et al.  Highly efficient photoelectrochemical response by sea-urchin shaped ZnO/TiO2 nano/micro hybrid heterostructures co-sensitized with CdS/CdSe , 2014 .

[127]  M. Čeh,et al.  High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications , 2014 .

[128]  J. Bisquert,et al.  Titanium dioxide nanomaterials for photovoltaic applications. , 2014, Chemical reviews.

[129]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[130]  Ruiqin Q. Zhang,et al.  Carbon dot loading and TiO₂ nanorod length dependence of photoelectrochemical properties in carbon dot/TiO₂ nanorod array nanocomposites. , 2014, ACS applied materials & interfaces.

[131]  T. Xu,et al.  Photovoltaic performance enhancement of CdS quantum dot-sensitized TiO2 photoanodes with plasmonic gold nanoparticles , 2014 .

[132]  Swagotom Sarker,et al.  Development of a highly efficient 1D/0D TiO2 nanotube/n-CdTe photoanode: single-step attachment, coverage, and size control by a solvothermal approach , 2014 .

[133]  Lianjun Liu,et al.  Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review , 2014 .

[134]  Haihui Wang,et al.  High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light , 2014 .

[135]  M. Maroto-Valer,et al.  Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst , 2014 .

[136]  A. Mohamed,et al.  Facet-dependent photocatalytic properties of TiO(2) -based composites for energy conversion and environmental remediation. , 2014, ChemSusChem.

[137]  S. Bordiga,et al.  Defect Sites in H2-Reduced TiO2 Convert Ethylene to High Density Polyethylene without Activator , 2014 .

[138]  Shaohua Shen,et al.  Au@SiO2 core/shell nanoparticle-decorated TiO2 nanorod arrays for enhanced photoelectrochemical water splitting , 2014 .

[139]  Wen Chen,et al.  Photoelectrochemical behavior of TiO2 nanorod arrays decorated with CuInS2 quantum dots , 2014 .

[140]  M. Batzill,et al.  Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films , 2014, Scientific Reports.

[141]  M. Shen,et al.  Plasmon mediated visible light photocurrent and photoelectrochemical hydrogen generation using Au nanoparticles/TiO2 electrode , 2014 .

[142]  Shaobin Wang,et al.  Research Advances in the Synthesis of Nanocarbon-Based Photocatalysts and Their Applications for Photocatalytic Conversion of Carbon Dioxide to Hydrocarbon Fuels , 2014 .

[143]  M. Leung,et al.  In situ deposition of Ag-Ag2S hybrid nanoparticles onto TiO2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. , 2014, Physical chemistry chemical physics : PCCP.

[144]  T. Tachikawa,et al.  Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. , 2014, Journal of the American Chemical Society.

[145]  A. Vinogradov,et al.  A simple preparation of highly photoactive Fe(III)-doped titania nanocrystals by annealing-free approach , 2013 .

[146]  Ning Wang,et al.  Hydrogenated TiO2 film for enhancing photovoltaic properties of solar cells and self-sensitized effect , 2013 .

[147]  Hyunsu Kim,et al.  Hydrothermally grown TiO_2 nanotubes on multi-layered Ti mesh electrodes for enhanced photoelectrochemical reaction , 2013 .

[148]  Shaohua Shen,et al.  Catalysing artificial photosynthesis , 2013, Nature Photonics.

[149]  Zheng Lou,et al.  Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. , 2013, ACS applied materials & interfaces.

[150]  Ji‐Hyun Jang,et al.  Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2 , 2013, Scientific Reports.

[151]  Alexander J. Cowan,et al.  Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting , 2013, The journal of physical chemistry. C, Nanomaterials and interfaces.

[152]  T. Shi,et al.  Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting , 2013, Nanoscale Research Letters.

[153]  Sungho Jin,et al.  Formation of 8 nm TiO2 nanotubes on a three dimensional electrode for enhanced photoelectrochemical reaction , 2013 .

[154]  C. Grigoropoulos,et al.  Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches. , 2013, Nanoscale.

[155]  B. Wood,et al.  Photoelectrochemical characterization of hydrogenated TiO2 nanotubes as photoanodes for sensing applications. , 2013, ACS applied materials & interfaces.

[156]  Daoyu Zhang,et al.  Band structure engineering of TiO2 nanowires by n-p codoping for enhanced visible-light photoelectrochemical water-splitting. , 2013, Physical chemistry chemical physics : PCCP.

[157]  Wenxia Liu,et al.  Enhanced decoloration activity by Cu2O@TiO2 nanobelts heterostructures via a strong adsorption-weak photodegradation process , 2013 .

[158]  Wenguang Tu,et al.  Versatile Graphene‐Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications , 2013 .

[159]  Gengfeng Zheng,et al.  Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. , 2013, ACS nano.

[160]  Jun Guo,et al.  Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells. , 2013, Small.

[161]  Chongyin Yang,et al.  Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania , 2013 .

[162]  X. Fang,et al.  Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance , 2013, Nanoscale Research Letters.

[163]  Tuo Wang,et al.  Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting. , 2013, Nanoscale.

[164]  Haibin Yang,et al.  Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity , 2013 .

[165]  Lianmao Peng,et al.  Self-assembly of large-scale floating TiO2 nanorod arrays at the gas-liquid interface. , 2013, ACS applied materials & interfaces.

[166]  Yan Sun,et al.  Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode , 2013 .

[167]  Y. Lan,et al.  Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications , 2013 .

[168]  Xiaobo Chen,et al.  Hydrogenated surface disorder enhances lithium ion battery performance , 2013 .

[169]  T. Xie,et al.  Facile fabrication of hierarchical TiO2 nanobelt/ZnO nanorod heterogeneous nanostructure: an efficient photoanode for water splitting. , 2013, ACS applied materials & interfaces.

[170]  Ho Won Jang,et al.  Highly Ordered TiO2 Nanotubes on Patterned Substrates: Synthesis-in-Place for Ultrasensitive Chemiresistors , 2013 .

[171]  F. Gao,et al.  In Situ Loading Transition Metal Oxide Clusters on TiO2 Nanosheets As Co-catalysts for Exceptional High Photoactivity , 2013 .

[172]  K. Pan,et al.  Controlled synthesis of mesoporous anatase TiO2 microspheres as a scattering layer to enhance the photoelectrical conversion efficiency , 2013 .

[173]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[174]  Jih-Sheng Yang,et al.  Morphology and interfacial energetics controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. , 2013, ACS applied materials & interfaces.

[175]  Hong Liu,et al.  Preparation of cellulose fiber–TiO2 nanobelt–silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties , 2013 .

[176]  Y. Hwang,et al.  Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes. , 2013, Journal of colloid and interface science.

[177]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[178]  Pramod K. Singh,et al.  Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review , 2013 .

[179]  Q. Ma,et al.  Quantum dots co-sensitized solar cells: a new assembly process of CdS/CdSe linked to mesoscopic TiO2-nano-SiO2 hybrid film , 2013, Journal of Sol-Gel Science and Technology.

[180]  F. Bai,et al.  Activating the single-crystal TiO2 nanoparticle film with exposed {001} facets. , 2013, ACS applied materials & interfaces.

[181]  Xinbin Ma,et al.  Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[182]  F. Zaera,et al.  Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications , 2013 .

[183]  F. Illas,et al.  Theoretical approaches to excited-state-related phenomena in oxide surfaces. , 2013, Chemical reviews.

[184]  C. Grimes,et al.  A novel method for the preparation of a photocorrosion stable core/shell CdTe/CdS quantum dot TiO2 nanotube array photoelectrode demonstrating an AM 1.5G photoconversion efficiency of 6.12% , 2013 .

[185]  H. Duan,et al.  High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO₂/SnO₂ branched heterojunction nanostructure. , 2013, Small.

[186]  Kimihisa Yamamoto,et al.  Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania , 2013, Scientific Reports.

[187]  P. Schmuki,et al.  TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications , 2013 .

[188]  F. Habelhames,et al.  Improvement of photoelectrochemical and optical characteristics of MEH-PPV using titanium dioxide nanoparticles , 2013 .

[189]  Weihua Tang,et al.  Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells , 2013 .

[190]  B. Mamba,et al.  Photoelectrochemical oxidation of p-nitrophenol on an expanded graphite—TiO_2 electrode , 2013, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[191]  Hao Wang,et al.  Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes , 2013, Nanoscale Research Letters.

[192]  T. Peng,et al.  The replacement of {1 0 1} by {0 1 0} facets inhibits the photocatalytic activity of anatase TiO2 , 2013 .

[193]  A. Bard,et al.  Rapid Screening by Scanning Electrochemical Microscopy (SECM) of Dopants for Bi2WO6 Improved Photocatalytic Water Oxidation with Zn Doping , 2013 .

[194]  Y. Hwang,et al.  Enhanced photoanode properties of CdS nanoparticle sensitized TiO2 nanotube arrays by solvothermal synthesis , 2013 .

[195]  Xuguang Liu,et al.  Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light , 2013 .

[196]  Jian Luo,et al.  Enhancing the visible-light photocatalytic activity of TiO2 by heat treatments in reducing environments , 2013 .

[197]  Guohua Zhao,et al.  Hierarchical (0 0 1) facet anatase/rutile TiO2 heterojunction photoanode with enhanced photoelectrocatalytic performance , 2013 .

[198]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[199]  M. Lin,et al.  Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals. , 2013, The Journal of chemical physics.

[200]  R. Sinclair,et al.  Erratum: Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance , 2013, Nature Communications.

[201]  Jinhua Ye,et al.  Reduced TiO2 nanotube arrays for photoelectrochemical water splitting , 2013 .

[202]  Wenhui Zhou,et al.  CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application , 2013 .

[203]  H. Cui,et al.  Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts , 2013 .

[204]  Zhiwei Lin,et al.  Oriented TiO2 nanowire array grown on curved surface of Ti wire with superior photoelectrochemical properties , 2013 .

[205]  I. Lyubinetsky,et al.  Molecular-level insights into photocatalysis from scanning probe microscopy studies on TiO2(110). , 2013, Chemical reviews.

[206]  U. Paik,et al.  Three dimensional-TiO(2) nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. , 2013, Chemical communications.

[207]  Tae-Sung Bae,et al.  Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams. , 2013, Nano letters.

[208]  F. Wang,et al.  Carbon quantum dot sensitized TiO₂ nanotube arrays for photoelectrochemical hydrogen generation under visible light. , 2013, Nanoscale.

[209]  L. Chi,et al.  Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes , 2013 .

[210]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[211]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[212]  A. Zaban,et al.  The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[213]  Weidong Shen,et al.  Fabrication of a novel heterostructure of Co3O4-modified TiO2 nanorod arrays and its enhanced photoelectrochemical property , 2013 .

[214]  R. Devan,et al.  Effective light harvesting in CdS nanoparticle-sensitized rutile TiO2 microspheres , 2013 .

[215]  W. J. Youngblood,et al.  Influence of seeding and bath conditions in hydrothermal growth of very thin (∼20 nm) single-crystalline rutile TiO₂ nanorod films. , 2013, ACS applied materials & interfaces.

[216]  Liqun Ye Comment on "High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction". , 2013, ACS applied materials & interfaces.

[217]  Xiaobo Chen,et al.  Revealing the structural properties of hydrogenated black TiO2 nanocrystals , 2013 .

[218]  Bingbing Liu,et al.  Synthesis of TiO_2@C core–shell nanostructures with various crystal structures by hydrothermal and postheat treatments , 2013 .

[219]  L. Manna,et al.  Colloidal branched semiconductor nanocrystals: state of the art and perspectives. , 2013, Accounts of chemical research.

[220]  N. Zhang,et al.  Synthesis of fullerene-, carbon nanotube-, and graphene-TiO₂ nanocomposite photocatalysts for selective oxidation: a comparative study. , 2013, ACS applied materials & interfaces.

[221]  Hongzhou Dong,et al.  Significant effects of reaction temperature on morphology, crystallinity, and photoelectrical properties of rutile TiO2 nanorod array films , 2013 .

[222]  D. Kisailus,et al.  Growth Mechanism of Highly Branched Titanium Dioxide Nanowires via Oriented Attachment , 2013 .

[223]  N. Umezawa,et al.  Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution , 2013 .

[224]  W. Cai,et al.  Rutile TiO2 films with 100% exposed pyramid-shaped (111) surface: photoelectron transport properties under UV and visible light irradiation , 2013 .

[225]  N. Keller,et al.  One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity , 2013 .

[226]  Q. Cai,et al.  Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays , 2013 .

[227]  W. Zhou,et al.  TiO2-B nanobelt/anatase TiO2 nanoparticle heterophase nanostructure fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells , 2013 .

[228]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[229]  E. Barea,et al.  Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf". , 2013, The journal of physical chemistry letters.

[230]  Abdullah M. Asiri,et al.  Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion , 2013 .

[231]  Hongwei Hu,et al.  Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells , 2013, Nanoscale Research Letters.

[232]  Huaidong Jiang,et al.  High ethanol sensitivity of palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions. , 2012, Journal of colloid and interface science.

[233]  Yan Sun,et al.  Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance , 2012 .

[234]  Pingquan Wang,et al.  One-pot synthesis of rutile TiO2 nanoparticle modified anatase TiO2 nanorods toward enhanced photocatalytic reduction of CO2 into hydrocarbon fuels , 2012 .

[235]  J. Chen,et al.  Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis. , 2012, ACS applied materials & interfaces.

[236]  A. Selloni,et al.  Hydrogen interaction with the anatase TiO2(101) surface. , 2012, Physical chemistry chemical physics : PCCP.

[237]  T. Ma,et al.  Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells based on a Ti substrate with TiO₂ nanoforest underlayer. , 2012, Small.

[238]  G. Mul,et al.  Surface Ti3+-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation , 2012 .

[239]  S. Haque,et al.  Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation , 2012 .

[240]  C. Mullins,et al.  Coincorporation of N and Ta into TiO2 Nanowires for Visible Light Driven Photoelectrochemical Water Oxidation , 2012 .

[241]  Huaidong Jiang,et al.  UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts , 2012 .

[242]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[243]  Dong‐sheng Li,et al.  Enhanced field emission from hydrogenated TiO2 nanotube arrays , 2012, Nanotechnology.

[244]  A. Corma,et al.  Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids , 2012 .

[245]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[246]  L. Etgar,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[247]  Dong‐Wan Kim,et al.  Sb:SnO2@TiO2 Heteroepitaxial Branched Nanoarchitectures for Li Ion Battery Electrodes , 2012 .

[248]  W. Zhou,et al.  Anatase TiO2 pillar-nanoparticle composite fabricated by layer-by-layer assembly for high-efficiency dye-sensitized solar cells. , 2012, Dalton transactions.

[249]  Xiao Hua Yang,et al.  Yolk@shell anatase TiO2 hierarchical microspheres with exposed {001} facets for high-performance dye sensitized solar cells , 2012 .

[250]  Kun Wang,et al.  Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. , 2012, Analytica chimica acta.

[251]  M. Shen,et al.  Interrupted growth and photoelectrochemistry of Cu2O and Cu particles on TiO2 , 2012 .

[252]  Shaowei Chen,et al.  Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures , 2012 .

[253]  Yun Wang,et al.  Visible light active pure rutile TiO2 photoanodes with 100% exposed pyramid-shaped (111) surfaces , 2012, Nano Research.

[254]  A. Mohamed,et al.  Synthesis and applications of graphene-based TiO(2) photocatalysts. , 2012, ChemSusChem.

[255]  N. Zhang,et al.  Recent progress on graphene-based photocatalysts: current status and future perspectives. , 2012, Nanoscale.

[256]  Ping Wang,et al.  Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. , 2012, Nanoscale.

[257]  T. Andreu,et al.  Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures , 2012 .

[258]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[259]  Hong Lin,et al.  Efficient Light Harvesting and Charge Collection of Dye-Sensitized Solar Cells with (001) Faceted Single Crystalline Anatase Nanoparticles , 2012 .

[260]  Chong-fang Ma,et al.  Effect of Quantum Dot Deposition on the Interfacial Flatband Potential, Depletion Layer in TiO2 Nanotube Electrodes, and Resulting H2 Generation Rates , 2012 .

[261]  T. Berger,et al.  The electrochemistry of nanostructured titanium dioxide electrodes. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[262]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[263]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[264]  C. Luo,et al.  Multi-step hydrothermally synthesized TiO2 nanoforests and its application to dye-sensitized solar cells , 2012 .

[265]  Haixin Chang,et al.  Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting , 2012 .

[266]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[267]  B. Liu,et al.  Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophoretic deposition technique , 2012 .

[268]  W. Lin,et al.  Hierarchical TiO2 Nanostructured Array/P3HT Hybrid Solar Cells with Interfacial Modification , 2012 .

[269]  S. Shah,et al.  Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2 , 2012 .

[270]  José L. Figueiredo,et al.  Design of graphene-based TiO2 photocatalysts—a review , 2012, Environmental Science and Pollution Research.

[271]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[272]  A. Rogach,et al.  Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size‐Dependency and Interfacial Contact on Photoconversion Efficiencies , 2012 .

[273]  M. Wohlfahrt‐Mehrens,et al.  High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. , 2012, Chemical Society reviews.

[274]  Wei Li,et al.  Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. , 2012, Chemical communications.

[275]  W. Xu,et al.  Effect of MWCNT Inclusion in TiO2 Nanowire Array Film on the Photoelectrochemical Performance , 2012 .

[276]  Min Guo,et al.  Effect of Substrate Pretreatment on Controllable Growth of TiO2 Nanorod Arrays , 2012 .

[277]  V. Subramanian,et al.  CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes: Optical, Surface, and Photoelectrochemical Properties , 2012 .

[278]  J. Jang,et al.  Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. , 2012, Journal of hazardous materials.

[279]  Hui‐Ming Cheng,et al.  A film of rutile TiO2 pillars with well-developed facets on an α-Ti substrate as a photoelectrode for improved water splitting. , 2012, Nanoscale.

[280]  Jingshan Luo,et al.  Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion , 2012, Scientific Reports.

[281]  N. Zhang,et al.  Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. , 2012, Physical chemistry chemical physics : PCCP.

[282]  Prashant V Kamat,et al.  Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly. , 2012, ACS nano.

[283]  Hao Yu,et al.  Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property , 2012 .

[284]  Kan Zhang,et al.  Sonochemical assisted synthesis of a novel TiO2/graphene composite for solar energy conversion , 2012 .

[285]  M. El-Sayed,et al.  Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review , 2012, Theoretical Chemistry Accounts.

[286]  Gonghu Li,et al.  Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications , 2012 .

[287]  Yun Jeong Hwang,et al.  Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. , 2012, ACS nano.

[288]  M. S. Akhtar,et al.  Controlled synthesis and photoelectrochemical properties of highly ordered TiO2 nanorods , 2012 .

[289]  T. Tachikawa,et al.  Superstructure of TiO2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges. , 2012, The journal of physical chemistry letters.

[290]  A. S. Nair,et al.  Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures , 2012 .

[291]  R. Devan,et al.  PbS quantum dot sensitized anatase TiO2 nanocorals for quantum dot-sensitized solar cell applications. , 2012, Dalton transactions.

[292]  Jianyu Gong,et al.  A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property , 2012 .

[293]  X. Duan,et al.  Towards highly efficient photocatalysts using semiconductor nanoarchitectures , 2012 .

[294]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[295]  P. Fornasiero,et al.  Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. , 2012, Journal of the American Chemical Society.

[296]  Aicheng Chen,et al.  Synthesis of CdS quantum-dot sensitized TiO2 nanowires with high photocatalytic activity for water splitting , 2012 .

[297]  K. Prabakar,et al.  Effect of synthesis temperature on structure, optical and photovoltaic properties of TiO2 nanorod thin films , 2012 .

[298]  R. Lukaszew,et al.  Strain Effects on the Crystal Growth and Superconducting Properties of Epitaxial Niobium Ultrathin Films , 2012 .

[299]  D. Kuang,et al.  Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres , 2012 .

[300]  Z. Xiong,et al.  Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. , 2012, Journal of the American Chemical Society.

[301]  Ming Lu,et al.  Band-structure modulation of SrTiO3 by hydrogenation for enhanced photoactivity , 2012 .

[302]  Ilkeun Lee,et al.  Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity , 2012 .

[303]  K. Chattopadhyay,et al.  Morphology control of rutile TiO2 hierarchical architectures and their excellent field emission properties , 2012 .

[304]  C. Grimes,et al.  Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell. , 2012, Nanoscale.

[305]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[306]  Jing Sun,et al.  Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells , 2012 .

[307]  A. J. Frank,et al.  Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires. , 2012, Angewandte Chemie.

[308]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[309]  G. Han,et al.  TiO2 Nanorod Arrays Sensitized with CdS Quantum Dots for Solar Cell Applications: Effects of Rod Geometry on Photoelectrochemical Performance , 2012 .

[310]  Yuming Cui,et al.  Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties , 2012 .

[311]  H. Jakobsen,et al.  Progress on free-standing and flow-through TiO2 nanotube membranes , 2012 .

[312]  G. Gary Wang,et al.  Hydrogen-treated WO3 nanoflakes show enhanced photostability , 2012 .

[313]  D. Zhao,et al.  Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. , 2012, Nano letters.

[314]  Hui Shen,et al.  Hierarchical rutile TiO2 mesocrystals assembled by nanocrystals-oriented attachment mechanism , 2012 .

[315]  Yat Li,et al.  Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. , 2012, Nanoscale.

[316]  Yuehe Lin,et al.  Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. , 2012, Nanoscale.

[317]  Nathan T. Hahn,et al.  Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. , 2012, Journal of the American Chemical Society.

[318]  Chang Liu,et al.  Core–shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol , 2012 .

[319]  Hong-Yan Chen,et al.  Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells , 2012 .

[320]  Yueping Fang,et al.  A simple preparation of nitrogen doped titanium dioxide nanocrystals with exposed (001) facets with high visible light activity. , 2012, Chemical communications.

[321]  Yiseul Park,et al.  Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet , 2012 .

[322]  Allen J. Bard,et al.  Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. , 2012, Nano letters.

[323]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[324]  M. Jaroniec,et al.  Graphene-based semiconductor photocatalysts. , 2012, Chemical Society reviews.

[325]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[326]  Yongquan Yin,et al.  Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. , 2011, Journal of hazardous materials.

[327]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[328]  Ronghua Liu,et al.  Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application , 2011 .

[329]  Yuanyuan Xie,et al.  Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification , 2011 .

[330]  Xiaoqiang An,et al.  Graphene-based photocatalytic composites , 2011 .

[331]  Porun Liu,et al.  A facile vapor-phase hydrothermal method for direct growth of titanate nanotubes on a titanium substrate via a distinctive nanosheet roll-up mechanism. , 2011, Journal of the American Chemical Society.

[332]  K. Ho,et al.  Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT , 2011 .

[333]  G. Gigli,et al.  Hyperbranched anatase TiO2 nanocrystals: nonaqueous synthesis, growth mechanism, and exploitation in dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[334]  O. Prezhdo,et al.  Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. , 2011, Journal of the American Chemical Society.

[335]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[336]  Jin-Yun Liao,et al.  Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. , 2011, ACS nano.

[337]  Z. Xia,et al.  TiO2 nanorods branched on fast-synthesized large clearance TiO2 nanotube arrays for dye-sensitized solar cells , 2011 .

[338]  De-jun Wang,et al.  Rutile TiO2 nanowires on anatase TiO2 nanofibers: a branched heterostructured photocatalysts via interface-assisted fabrication approach. , 2011, Journal of colloid and interface science.

[339]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[340]  Y. Wada,et al.  Enhancement of Photoexcited Charge Transfer by {001} Facet-Dominating TiO2 Nanoparticles , 2011 .

[341]  Xiangqing Li,et al.  Effect of Si doping on the photocatalytic activity and photoelectrochemical property of TiO2 nanoparticles , 2011 .

[342]  Zhong Lin Wang,et al.  Branched TiO2 Nanorods Covered with TiO2 Nanosheets for Harvesting Solar Energies in Dye-Sensitized Solar Cells , 2011 .

[343]  Tao Wang,et al.  Growth of branched rutile TiO2 nanorod arrays on F-doped tin oxide substrate , 2011 .

[344]  D. Kisailus,et al.  Solvothermal synthesis of a highly branched Ta-doped TiO_2 , 2011 .

[345]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[346]  Hongzhi Wang,et al.  Solvent-controlled formation and photoelectrochemical sensing properties of 3-dimensional TiO2 nanostructures , 2011 .

[347]  H. Hng,et al.  Solution heteroepitaxial growth of dendritic SnO_2/TiO_2 hybrid nanowires , 2011 .

[348]  M. Jaroniec,et al.  Enhanced photocatalytic H₂-production activity of graphene-modified titania nanosheets. , 2011, Nanoscale.

[349]  Xianzhi Fu,et al.  Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? , 2011, ACS nano.

[350]  G. Gigli,et al.  High-quality photoelectrodes based on shape-tailored TiO2 nanocrystals for dye-sensitized solar cells , 2011 .

[351]  Yiping Zhao,et al.  Structural, Optical, and Photocatalytic Properties of Cr:TiO2 Nanorod Array Fabricated by Oblique Angle Codeposition , 2011 .

[352]  Y. Kang,et al.  Axis-Oriented, Anatase TiO2 Single Crystals with Dominant {001} and {100} Facets , 2011 .

[353]  P. Schmuki,et al.  Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. , 2011, Nanoscale.

[354]  Dong-Hwang Chen,et al.  Fabrication and photoelectrochemical study of Ag@TiO 2 nanoparticle thin film electrode , 2011 .

[355]  Hong Liu,et al.  Enhancement of photocatalytic properties of TiO2 nanobelts through surface-coarsening and surface nanoheterostructure construction , 2011 .

[356]  Jianjun Yang,et al.  Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation , 2011, 1107.4411.

[357]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[358]  Jung‐Kun Lee,et al.  Carrier Transport in Dye-Sensitized Solar Cells Using Single Crystalline TiO2 Nanorods Grown by a Microwave-Assisted Hydrothermal Reaction , 2011 .

[359]  L. Schmidt‐Mende,et al.  Heteroepitaxial growth of ZnO branches selectively on TiO2 nanorod tips with improved light harvesting performance. , 2011, Chemical communications.

[360]  G. Lu,et al.  Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. , 2011, Chemical communications.

[361]  Jung-tak Jang,et al.  Multiple twinning drives nanoscale hyper-branching of titanium dioxide nanocrystals , 2011 .

[362]  Antoni W. Morawski,et al.  The application of titanium dioxide for deactivation of bioparticulates: An overview , 2011 .

[363]  G. Cui,et al.  Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries , 2011 .

[364]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[365]  Feng Zhou,et al.  TiO2 nanotubes: Structure optimization for solar cells , 2011 .

[366]  H. Tada,et al.  Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. , 2011, Chemical Society reviews.

[367]  Zhi-You Zhou,et al.  Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. , 2011, Chemical Society reviews.

[368]  Jih-Jen Wu,et al.  Wet chemical route to hierarchical TiO2 nanodendrite/nanoparticle composite anodes for dye-sensitized solar cells , 2011 .

[369]  Junseok Lee,et al.  Electron-induced dissociation of CO2 on TiO2(110). , 2011, Journal of the American Chemical Society.

[370]  Hamid Garmestani,et al.  Electrochemical Fabrication of Strontium-Doped TiO2 Nanotube Array Electrodes and Investigation of Their Photoelectrochemical Properties , 2011 .

[371]  J. Zou,et al.  Anatase TiO₂ crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. , 2011, ACS applied materials & interfaces.

[372]  P. Biswas,et al.  Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO2 thin films , 2011 .

[373]  Si-Jin Kim,et al.  3-Dimensional TiO2 nanostructure supports and their improved electrochemical properties in methanol electrooxidation , 2011 .

[374]  Porun Liu,et al.  Facile fabrication of anatase TiO2 microspheres on solid substrates and surface crystal facet transformation from {001} to {101}. , 2011, Chemistry.

[375]  Wenguang Tu,et al.  Single-step fabrication of phase-controllable nanocrystalline TiO2 films for enhanced photoelectrochemical water splitting and dye-sensitized solar cells , 2011 .

[376]  Nageh K. Allam,et al.  Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting. , 2011, ACS nano.

[377]  T. Akita,et al.  Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[378]  G. Han,et al.  Solvent-controlled synthesis of three-dimensional TiO2 nanostructures via a one-step solvothermal route , 2011 .

[379]  Xuri Huang,et al.  3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property , 2011 .

[380]  S. Rohani,et al.  Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review , 2011 .

[381]  S. Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[382]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[383]  H. Teng,et al.  CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells , 2011 .

[384]  Sean C. Smith,et al.  Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite , 2011 .

[385]  M. Jaroniec,et al.  Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. , 2011, Physical chemistry chemical physics : PCCP.

[386]  Yat Li,et al.  CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance , 2011 .

[387]  R. Leary,et al.  Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis , 2011 .

[388]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[389]  Xiaoming Huang,et al.  Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[390]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[391]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[392]  C. Grimes,et al.  Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. , 2011, ACS applied materials & interfaces.

[393]  Jiaguo Yu,et al.  Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. , 2011, Physical chemistry chemical physics : PCCP.

[394]  Xiaoling Yang,et al.  Preparation of graphene–TiO2 composites with enhanced photocatalytic activity , 2011 .

[395]  G. Cao,et al.  Enhanced power conversion efficiency in dye-sensitized solar cells with TiO2 aggregates/nanocrystallites mixed photoelectrodes , 2011 .

[396]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[397]  Hao Yu,et al.  Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances , 2011 .

[398]  G. Lu,et al.  TiO2 films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes , 2011 .

[399]  Xin Li,et al.  Two novel hierarchical homogeneous nanoarchitectures of TiO2 nanorods branched and P25-coated TiO2 nanotube arrays and their photocurrent performances , 2011, Nanoscale research letters.

[400]  Mingmei Wu,et al.  Nanoflower arrays of rutile TiO2. , 2011, Chemical communications.

[401]  Y. Lai,et al.  A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals , 2010 .

[402]  Q. Shen,et al.  Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies , 2010 .

[403]  T. Tachikawa,et al.  Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. , 2010, Chemical Society reviews.

[404]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[405]  Guojun Du,et al.  Interface dominated high photocatalytic properties of electrostatic self-assembled Ag(2)O/TiO(2) heterostructure. , 2010, Physical chemistry chemical physics : PCCP.

[406]  Lan-sun Zheng,et al.  Syntheses and Properties of Micro/Nanostructured Crystallites with High‐Energy Surfaces , 2010 .

[407]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[408]  Guojun Du,et al.  Enhancement of ethanol vapor sensing of TiO2 nanobelts by surface engineering. , 2010, ACS applied materials & interfaces.

[409]  Y. Lai,et al.  Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel , 2010 .

[410]  Yujie Feng,et al.  Synthesis of visible-light responsive graphene oxide/TiO(2) composites with p/n heterojunction. , 2010, ACS nano.

[411]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[412]  S. Cho,et al.  Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. , 2010, ACS applied materials & interfaces.

[413]  Xiguang Chen,et al.  Facile synthesis of rice-like anatase TiO2 nanocrystals , 2010 .

[414]  Yaron Paz,et al.  Application of TiO2 photocatalysis for air treatment: Patents’ overview , 2010 .

[415]  Hua Wang,et al.  CdS Quantum Dots-Sensitized TiO2 Nanorod Array on Transparent Conductive Glass Photoelectrodes , 2010 .

[416]  Nageh K. Allam,et al.  Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays. , 2010, ACS nano.

[417]  N. Dimitrijević,et al.  Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes , 2010 .

[418]  P. Kamat,et al.  To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films , 2010 .

[419]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[420]  Shui-Tong Lee,et al.  Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates , 2010 .

[421]  P. Kamat,et al.  Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe , 2010 .

[422]  Nageh K. Allam,et al.  Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays: Structural and Optical Properties , 2010 .

[423]  K. Schulte,et al.  Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light , 2010 .

[424]  A. Pandikumar,et al.  Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. , 2010, ACS applied materials & interfaces.

[425]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[426]  Jinlong Zhang,et al.  Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides , 2010 .

[427]  J. Janek,et al.  Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. , 2010, ACS nano.

[428]  A. Manivannan,et al.  Shape-enhanced photocatalytic activity of single-crystalline anatase TiO(2) (101) nanobelts. , 2010, Journal of the American Chemical Society.

[429]  Yang Zhang,et al.  Low-temperature and normal-pressure growth of oriented rutile TiO2 nanorod arrays on F-doped tin oxide substrate , 2010 .

[430]  H. Teng,et al.  Solution synthesis of high-quality CuInS2 quantum dots as sensitizers for TiO2 photoelectrodes , 2010 .

[431]  Huijun Zhao,et al.  Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[432]  Jae Hong Kim,et al.  Visible-photoresponsive Nitrogen-Doped Mesoporous TiO 2 Films for Photoelectrochemical Cells , 2010 .

[433]  Lianmao Peng,et al.  Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots , 2010 .

[434]  Chang Ming Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[435]  Anuj R. Madaria,et al.  Growth of Aligned Single-Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells , 2010 .

[436]  Jong Hyeok Park,et al.  CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. , 2010, Chemical communications.

[437]  Xuefeng Guo,et al.  Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. , 2010, Chemical communications.

[438]  T. He,et al.  Anatase TiO(2) single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. , 2010, Chemical communications.

[439]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[440]  S. Link,et al.  Probing a century old prediction one plasmonic particle at a time. , 2010, Nano letters.

[441]  Claudio Ampelli,et al.  Synthesis of solar fuels by a novel photoelectrocatalytic approach , 2010 .

[442]  S. Yoshikawa,et al.  Improvement of Dye-Sensitized Solar Cell Through TiCl4-Treated TiO2 Nanotube Arrays , 2010 .

[443]  Chenmin Liu,et al.  Hybrid solar cells based on blends of poly(3-hexylthiophene) and surface dye-modified, ultrathin linear- and branched-TiO2 nanorods , 2010 .

[444]  B. Hameed,et al.  The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .

[445]  S. Molloi,et al.  Self-Organization of Anatase TiO2 Nanoparticles to Regular Shape Clusters , 2010 .

[446]  Yuh‐Lang Lee,et al.  CdS/CdSe Co-Sensitized TiO2 Photoelectrode for Efficient Hydrogen Generation in a Photoelectrochemical Cell† , 2010 .

[447]  K. Amine,et al.  Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties† , 2010 .

[448]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[449]  Yueming Li,et al.  P25-graphene composite as a high performance photocatalyst. , 2010, ACS nano.

[450]  Sean C. Smith,et al.  Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. , 2010, Chemical communications.

[451]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[452]  Liangliang Cao,et al.  Ordered TiO2 Nanotube Arrays on Transparent Conductive Oxide for Dye-Sensitized Solar Cells , 2010 .

[453]  Jennifer K. Hensel,et al.  Preparation and Photoelectrochemical Properties of CdSe/TiO 2 Hybrid Mesoporous Structures , 2010 .

[454]  L. Zou,et al.  Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review , 2009 .

[455]  T. Peng,et al.  Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells , 2009 .

[456]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[457]  Qi Li,et al.  Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. , 2009, Environmental science & technology.

[458]  Y. Alivov,et al.  A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles , 2009, Nanotechnology.

[459]  Jinlong Zhang,et al.  Brookite TiO2 nanoflowers. , 2009, Chemical communications.

[460]  S. Luo,et al.  Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite , 2009 .

[461]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[462]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[463]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[464]  Mingmei Wu,et al.  Cross-medal arrays of Ta-doped rutile titania. , 2009, Journal of the American Chemical Society.

[465]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[466]  H. Tada,et al.  Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. , 2009, Chemical Society reviews.

[467]  Vyacheslav N. Kuznetsov,et al.  On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments , 2009 .

[468]  Nageh K. Allam,et al.  Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[469]  Can Xue,et al.  In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces , 2009 .

[470]  Xue-qing Gong,et al.  Nucleation and Growth of 1D Water Clusters on Rutile TiO2 (011)-2×1 , 2009 .

[471]  R. Naidu,et al.  Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review , 2009 .

[472]  Hongtao Yu,et al.  “Mulberry-like” CdSe Nanoclusters Anchored on TiO2 Nanotube Arrays: A Novel Architecture with Remarkable Photoelectrochemical Performance , 2009 .

[473]  Junichi Nemoto,et al.  Photoelectrochemical reaction of biomass-related compounds in a biophotochemical cell comprising a nanoporous TiO2 film photoanode and an O2-reducing cathode , 2009 .

[474]  Mingmei Wu,et al.  Hierarchically nanostructured rutile arrays: acid vapor oxidation growth and tunable morphologies. , 2009, ACS nano.

[475]  Lianmao Peng,et al.  CdTe Quantum Dots-Sensitized TiO2 Nanotube Array Photoelectrodes , 2009 .

[476]  T. Tatsuma,et al.  Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[477]  T. Oekermann,et al.  Improving the Photocatalytic Performance of Mesoporous Titania Films by Modification with Gold Nanostructures , 2009 .

[478]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[479]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[480]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[481]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[482]  Juan Bisquert,et al.  CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment , 2009 .

[483]  Q. Kuang,et al.  Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. , 2009, Journal of the American Chemical Society.

[484]  Q. Shen,et al.  Photoacoustic spectra of Au quantum dots adsorbed on nanostructured TiO2 electrodes together with the photoelectrochemical current characteristics , 2009 .

[485]  A. Zaban,et al.  Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating , 2009 .

[486]  A. Durán,et al.  Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel , 2009 .

[487]  Toshiki Tsubota,et al.  Shape-Controlled Anatase Titanium(IV) Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol , 2009 .

[488]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[489]  J. Macák,et al.  Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4) , 2008 .

[490]  Huimin Zhao,et al.  A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity , 2008 .

[491]  E. Aydil,et al.  Oriented single crystalline titanium dioxide nanowires , 2008, Nanotechnology.

[492]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[493]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[494]  J. Nowotny Titanium dioxide-based semiconductors for solar-driven environmentally friendly applications: impact of point defects on performance , 2008 .

[495]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[496]  P. Kamat Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[497]  Yoshiki Shimizu,et al.  Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. , 2008, Journal of the American Chemical Society.

[498]  C. Lamberti,et al.  Oriented TiO2 Nanostructured Pillar Arrays: Synthesis and Characterization , 2008 .

[499]  Xingwang Zhang,et al.  Preparation of visible-light responsive PF-codoped TiO2 nanotubes , 2008 .

[500]  Lei Jiang,et al.  Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process , 2008 .

[501]  Lei Yang,et al.  Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres , 2008 .

[502]  Chenghua Sun,et al.  Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO(2) film. , 2008, Chemical communications.

[503]  C. Grimes,et al.  Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes , 2008 .

[504]  M. Misra,et al.  Efficient Photoelectrolysis of Water using TiO2 Nanotube Arrays by Minimizing Recombination Losses with Organic Additives , 2008 .

[505]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[506]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[507]  Nageh K. Allam,et al.  Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes , 2008 .

[508]  M. Misra,et al.  Synthesis of Y-branched TiO2 nanotubes , 2008 .

[509]  M. Katsnelson,et al.  Modeling of graphite oxide. , 2008, Journal of the American Chemical Society.

[510]  Xinhu Tang,et al.  Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response , 2008 .

[511]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts† , 2008 .

[512]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[513]  P. Biswas,et al.  Nanostructured TiO2 Films with Controlled Morphology Synthesized in a Single Step Process: Performance of Dye-Sensitized Solar Cells and Photo Watersplitting , 2008 .

[514]  P. Schmuki,et al.  Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. , 2008, Angewandte Chemie.

[515]  A. Korotcov,et al.  Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal–organic chemical vapor deposition , 2008, Nanotechnology.

[516]  A. Corma,et al.  Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. , 2008, Physical chemistry chemical physics : PCCP.

[517]  P. Kajitvichyanukul,et al.  Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. , 2008, Journal of the American Chemical Society.

[518]  G. Lu,et al.  Electron field emission of a nitrogen-doped TiO2 nanotube array , 2008, Nanotechnology.

[519]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[520]  Lianmao Peng,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[521]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .

[522]  Ming-hua Zhou,et al.  Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte , 2007 .

[523]  Tae Geun Kim,et al.  Enhanced Photochemical Response of TiO2/CdSe Heterostructured Nanowires , 2007 .

[524]  Miguel Pelaez,et al.  Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. , 2007, Environmental science & technology.

[525]  N. Lakshminarasimhan,et al.  Enhanced Photocatalytic Production of H2 on Mesoporous TiO2 Prepared by Template-Free Method: Role of Interparticle Charge Transfer , 2007 .

[526]  Song Han,et al.  F–B-codoping of anodized TiO2 nanotubes using chemical vapor deposition , 2007 .

[527]  M. Vázquez,et al.  Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays , 2007 .

[528]  Craig A. Grimes,et al.  Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte , 2007 .

[529]  C. Grimes,et al.  Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes , 2007 .

[530]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[531]  Jing Yin,et al.  Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films , 2007 .

[532]  Guohua Chen,et al.  Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability , 2007 .

[533]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[534]  J. Macák,et al.  Multilayer TiO2–Nanotube Formation by Two-Step Anodization , 2007 .

[535]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[536]  Erik M. J. Johansson,et al.  Electronic and molecular surface structure of a polyene-diphenylaniline dye adsorbed from solution onto nanoporous TiO2 , 2007 .

[537]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[538]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[539]  Jin Zhai,et al.  TiO(2) porous electrodes with hierarchical branched inner channels for charge transport in viscous electrolytes. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[540]  C. Adamo,et al.  Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. , 2007, The Journal of chemical physics.

[541]  Ronald J. Willey,et al.  Ultra‐High‐Aspect‐Ratio Titania Nanotubes , 2007 .

[542]  G. Cao,et al.  Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells , 2007 .

[543]  T. Tachikawa,et al.  Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts , 2007 .

[544]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[545]  J. Wu,et al.  Synthesizing and Comparing the Photocatalytic Activities of Single-Crystalline TiO2 Rutile Nanowires and Mesoporous Anatase Paste , 2007 .

[546]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[547]  Jin-Ming Wu,et al.  Low‐Temperature Growth of Monolayer Rutile TiO2 Nanorod Films , 2007 .

[548]  Vesa-Pekka Lehto,et al.  Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment , 2007 .

[549]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[550]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[551]  J. Macák,et al.  Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses , 2006 .

[552]  V. K. Mahajan,et al.  Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light , 2006 .

[553]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[554]  Y. Sung,et al.  Controlled growth of high-quality TiO2 nanowires on sapphire and silica , 2006 .

[555]  H. Imai,et al.  {1 1 1}-faceting of low-temperature processed rutile TiO2 rods , 2006 .

[556]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[557]  C. Grimes,et al.  An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties , 2006 .

[558]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[559]  D. Shu,et al.  Preparation and photoelectrocatalytic activity of Pt(TiO2)–TiO2 hybrid films , 2006 .

[560]  Lothar Frey,et al.  Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes , 2006 .

[561]  S. Fukuzumi,et al.  Supramolecular nanostructured assemblies of different types of porphyrins with fullerene using TiO2 nanoparticles for light energy conversion , 2006 .

[562]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[563]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[564]  J. Wu,et al.  Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation , 2006 .

[565]  Fumin Wang,et al.  Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. , 2006, The journal of physical chemistry. B.

[566]  J. Pan,et al.  Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2 Films and Their Photocatalytic Properties , 2006 .

[567]  W. Liu,et al.  A Hybrid Poly(ethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid‐State Redox Electrolyte for Dye‐Sensitized Nanocrystalline Solar Cells , 2005 .

[568]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[569]  Balasubramanian Viswanathan,et al.  Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst , 2005 .

[570]  Xue-qing Gong,et al.  Reactivity of anatase TiO(2) nanoparticles: the role of the minority (001) surface. , 2005, The journal of physical chemistry. B.

[571]  A. Nozik,et al.  Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultra-High Efficiency Solar Photon Conversion , 2005, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[572]  C. Nicolini,et al.  Ultrathin films of tetrasulfonated copper phthalocyanine-capped titanium dioxide nanoparticles: fabrication, characterization, and photovoltaic effect. , 2005, Journal of colloid and interface science.

[573]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[574]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[575]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[576]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[577]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[578]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[579]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[580]  A. Gonzalez-Elipe,et al.  Structural, Optical, and Photoelectrochemical Properties of M n + −TiO 2 Model Thin Film Photocatalysts , 2004 .

[581]  K. Wei,et al.  Synthesis of arrayed, TiO2 needlelike nanostructures via a polystyrene-block-poly(4-vinylpyridine) diblock copolymer template , 2004 .

[582]  Jin-Ming Wu Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide , 2004 .

[583]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[584]  Yiying Wu,et al.  Synthesis and photocatalytic properties of highly crystalline and ordered mesoporous TiO2 thin films. , 2004, Chemical communications.

[585]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[586]  H. Imai,et al.  Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. , 2004, Journal of the American Chemical Society.

[587]  Oliver Diwald,et al.  Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light , 2004 .

[588]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[589]  Jih-Jen Wu,et al.  Aligned TiO2 Nanorods and Nanowalls , 2004 .

[590]  C. Grimes,et al.  A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[591]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[592]  Huijun Zhao,et al.  Characterization of Photoelectrocatalytic Processes at Nanoporous TiO2 Film Electrodes: Photocatalytic Oxidation of Glucose , 2003 .

[593]  Takayuki Kitamura,et al.  Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells , 2003 .

[594]  D. Riley,et al.  Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2 , 2003 .

[595]  U. Diebold,et al.  Scanning Tunneling Microscopy Study of the Anatase (100) Surface , 2003 .

[596]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[597]  Qing Zhang and,et al.  Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: Insights from rutile TiO2 , 2003 .

[598]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[599]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[600]  D. Riley,et al.  Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. , 2002, Chemical communications.

[601]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[602]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[603]  T. Kitamura,et al.  Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes , 2002 .

[604]  M. Moskovits,et al.  Highly regular anatase nanotubule arrays fabricated in porous anodic templates , 2001 .

[605]  Chunhui Huang,et al.  The photoelectrochemical properties of TiO2 electrodes modified by quantum sized PbS and thiols , 2001 .

[606]  Xinyi Zhang,et al.  Electrochemical Fabrication of Single-Crystalline Anatase TiO2 Nanowire Arrays , 2001 .

[607]  Annabella Selloni,et al.  Structure and energetics of stoichiometric TiO 2 anatase surfaces , 2001 .

[608]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[609]  T. Kuech,et al.  Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing. , 2000, Chemical reviews.

[610]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[611]  S. Cai,et al.  Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles , 1999 .

[612]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[613]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[614]  D. Vanmaekelbergh,et al.  INVESTIGATION OF THE ELECTRONIC TRANSPORT PROPERTIES OF NANOCRYSTALLINE PARTICULATE TIO2 ELECTRODES BY INTENSITY-MODULATED PHOTOCURRENT SPECTROSCOPY , 1997 .

[615]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[616]  James R. Bolton,et al.  Solar photoproduction of hydrogen: A review , 1996 .

[617]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[618]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[619]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[620]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[621]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[622]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[623]  M. Anpo,et al.  Reduction of CO2 with H2O on TiO2(100) and TiO2(110) Single Crystals under UV-irradiation , 1994 .

[624]  G. Margaritondo,et al.  Electronic-Structure of Anatase Tio2 Oxide , 1994 .

[625]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[626]  Prashant V. Kamat,et al.  Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films , 1993 .

[627]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[628]  A. Roberts Mechanisms for the excitation of ‘free nerve endings’ , 1975, Nature.

[629]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[630]  I. Bae,et al.  Microstructure development of hydrothermally grown TiO2 thin films with vertically aligned nanorods , 2018 .

[631]  R. Zbořil,et al.  Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO 2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region , 2018 .

[632]  H. Miao,et al.  A facile strategy to fabricate Au/TiO2 nanotubes photoelectrode with excellent photoelectrocatalytic properties , 2017 .

[633]  Yibing Xie Photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays , 2016 .

[634]  Seung Hyun Noh,et al.  Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion , 2016 .

[635]  U. Paik,et al.  TiO2 as an active or supplemental material for lithium batteries , 2016 .

[636]  M. Tabatabaei,et al.  TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes , 2016 .

[637]  M. Meggouh,et al.  Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. , 2016, Chemistry, an Asian journal.

[638]  D. Ding,et al.  Hierarchical TiO2 nanoflowers/nanosheets array film: synthesis, growth mechanism and enhanced photoelectrochemical properties , 2015 .

[639]  Aicheng Chen,et al.  Synthesis and photoelectrochemical studies of N, Zr co-doped mesoporous titanium dioxide , 2015 .

[640]  W. Choi,et al.  N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes , 2015 .

[641]  Wenjun Zhang,et al.  A Nitrogen-Doped Carbon Dot-Sensitized TiO2 Inverse Opal Film: Preparation, Enhanced Photoelectrochemical and Photocatalytic Performance , 2015 .

[642]  A. Fujishima,et al.  Enhanced Photoelectrocatalytic Water Splitting at Hierarchical Gd3+:TiO2 Nanostructures through Amplifying Light Reception and Surface States Passivation , 2015 .

[643]  Yuehe Lin,et al.  A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties , 2014 .

[644]  Dunwei Wang,et al.  Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials , 2014, Nano Research.

[645]  Haiqiang Lu,et al.  Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity , 2014 .

[646]  Jin-Kyu Kang,et al.  Graphene oxide embedded into TiO2 nanofiber: Effective hybrid photocatalyst for solar conversion , 2014 .

[647]  M. Liu,et al.  Fabrication of CdTe Quantum Dots Sensitized TiO2 Nanorod-Array-Film Photoanodes via the Route of Electrochemical Atomic Layer Deposition , 2014 .

[648]  High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction , 2014 .

[649]  Lang Zhou,et al.  Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation , 2013 .

[650]  Zhengcao Li,et al.  Visible Light Photoelectrochemical Properties of N-doped TiO 2 nanorod arrays from TiN , 2013 .

[651]  Yunfeng Lu,et al.  The development of better photocatalysts through composition- and structure-engineering. , 2013, Chemistry, an Asian journal.

[652]  Dong‐Wan Kim,et al.  Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes , 2013, Nano Research.

[653]  Jinhua Ye,et al.  High-active anatase TiO₂ nanosheets exposed with 95% {100} facets toward efficient H₂ evolution and CO₂ photoreduction. , 2013, ACS applied materials & interfaces.

[654]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[655]  Yat Li,et al.  Ultrafast Charge Carrier Dynamics and Photoelectrochemical Properties of Hydrogen-treated TiO 2 Nanowire Arrays , 2012 .

[656]  Hao Yu,et al.  Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B,N-doped TiO2 , 2011 .

[657]  N. Naseri,et al.  Visible light active Au:TiO2 nanocomposite photoanodes for water splitting: Sol–gel vs. sputtering , 2011 .

[658]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[659]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[660]  Jihuai Wu,et al.  Crystal Morphology of Anatase Titania Nanocrystals Used in Dye-Sensitized Solar Cells , 2008 .

[661]  Huijun Zhao,et al.  Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. , 2007, Environmental science & technology.

[662]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[663]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[664]  M. Grätzel Photoelectrochemical cells , 2001, Nature.

[665]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[666]  A. Hagfeldt,et al.  Molecular photovoltaics. , 2000, Accounts of chemical research.

[667]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[668]  F. Solymosi,et al.  Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 Catalysts , 1994 .

[669]  H. Schwarz,et al.  Reduction potentials of CO2- and the alcohol radicals , 1989 .

[670]  J. Bolton Solar fuels. , 1978, Science.