Model theory of operator algebras III: elementary equivalence and II1 factors

We use continuous model theory to obtain several results concerning isomorphisms and embeddings between II_1 factors and their ultrapowers. Among other things, we show that for any II_1 factor M, there are continuum many nonisomorphic separable II_1 factors that have an ultrapower isomorphic to an ultrapower of M. We also give a poor man's resolution of the Connes Embedding Problem: there exists a separable II_1 factor such that all II_1 factors embed into one of its ultrapowers.

[1]  S. Szarek The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .

[2]  Sorin Popa,et al.  On a problem of R.V. Kadison on maximal abelian *-subalgebras in factors , 1981 .

[3]  Theworkof Alain Connes CLASSIFICATION OF INJECTIVE FACTORS , 1981 .

[4]  J. J. Lee ULTRAPRODUCTS IN ANALYSIS , 2002 .

[5]  Divisible operators in von Neumann algebras , 2006, math/0611364.

[6]  D. Dacunha-castelle,et al.  Application des ultraproduits à l'étude des espaces et des algèbres de Banach , 1972 .

[7]  Saharon Shelah,et al.  Every two elementarily equivalent models have isomorphic ultrapowers , 1971 .

[8]  J. von Neumann,et al.  On rings of operators. II , 1937 .

[9]  Ilijas Farah,et al.  Model theory of operator algebras I: stability , 2009, 0908.2790.

[10]  David Sherman LOCALLY INNER AUTOMORPHISMS OF OPERATOR ALGEBRAS , 2006, math/0609735.

[11]  D. Hadwin,et al.  A note on the invariant subspace problem relative to a type ${\rm II}_1$ factor , 2008, 0808.0049.

[12]  Isaac Goldbring,et al.  Pseudofinite and Pseudocompact Metric Structures , 2015, Notre Dame J. Formal Log..

[13]  Amenability, tubularity, and embeddings into $$\mathcal{R}^{\omega}$$ , 2005, math/0506108.

[14]  Alexander Usvyatsov,et al.  CONTINUOUS FIRST ORDER LOGIC AND LOCAL STABILITY , 2008, 0801.4303.

[15]  Itay Ben-Yaacov,et al.  Positive Model Theory and Compact Abstract Theories , 2003, J. Math. Log..

[16]  Amenability, Tubularity, and Embeddings into R , 2005 .

[17]  H. Jerome Keisler,et al.  Continuous Model Theory , 1966 .

[18]  C. Ward Henson Nonstandard hulls of Banach spaces , 1976 .

[19]  J. Stern Ultrapowers and local properties of Banach spaces , 1978 .

[20]  The relative commutant of separable C∗-algebras of real rank zero , 2008, 0809.2843.

[21]  Vladimir Pestov,et al.  Hyperlinear and Sofic Groups: A Brief Guide , 2008, Bulletin of Symbolic Logic.

[22]  D. Scott,et al.  Reduced Direct Products , 1962 .

[23]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, II , 1994 .

[24]  A. Sinclair,et al.  Finite Von Neumann Algebras and Masas , 2008 .

[25]  R. C. James,et al.  Uniformly Non-Square Banach Spaces , 1964 .

[26]  N. Ozawa There is no separable universal ₁-factor , 2003 .

[27]  A. Connes,et al.  Classification of Injective Factors Cases II 1 , II ∞ , III λ , λ 1 , 1976 .

[28]  H. Jerome Keisler,et al.  Continuous Model Theory. (AM-58) , 1966 .

[29]  L. Ge,et al.  Ultraproducts of C*-algebras , 2001 .

[30]  D. Mcduff Central Sequences and the Hyperfinite Factor , 1970 .

[31]  L. C. Moore,et al.  Subspaces of the nonstandard hull of a normed space , 1974 .

[32]  D. Hadwin,et al.  A Note on Approximate Liftings , 2008, 0804.1387.

[33]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[34]  Florin R Adulescu Convex sets associated with von~Neumann algebras and Connes' approximate embedding problem , 1999 .

[35]  J. Neumann,et al.  On Rings of Operators. III , 1940 .

[36]  Saharon Shelah Vive la Différence I: Nonisomorphism of Ultrapowers of Countable Models , 1992 .

[37]  A. S. Amitsur,et al.  Minimal identities for algebras , 1950 .

[38]  E. Kirchberg Central Sequences in C*-Algebras and Strongly Purely Infinite Algebras , 2006 .

[39]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[40]  H. Jerome Keisler,et al.  Ultraproducts and elementary classes , 1961 .

[41]  L. Weihua On ultraproducts of operator algebras , 2005 .

[42]  Anand Pillay,et al.  Model theory with applications to algebra and analysis , 2008 .

[43]  Ilijas Farah,et al.  Model theory of operator algebras II: model theory , 2010, 1004.0741.

[44]  L. Schwartz,et al.  Geometry and probability in Banach spaces , 1981 .

[45]  J. Krivine,et al.  Langages à valeurs réelles et applications , 1974 .

[46]  Tim Netzer,et al.  Tracial algebras and an embedding theorem , 2010, 1005.0822.

[47]  L. C Moore,et al.  Approximately finite-dimensional Banach spaces , 1981 .

[48]  C. Ward Henson,et al.  Model Theory with Applications to Algebra and Analysis: Model theory for metric structures , 2008 .

[49]  P. Jorgensen,et al.  FREE PRODUCT VON NEUMANN ALGEBRAS OF TYPE III , 2010 .

[50]  Carl Winsløw,et al.  The Effros-Maréchal topology in the space of von Neumann algebras , 1998 .

[51]  David Sherman Notes on automorphisms of ultrapowers of II_1 factors , 2008, 0809.4439.

[52]  There is no separable universal II_1-factor , 2002, math/0210411.

[53]  D. Handelman,et al.  Closedness of index values for subfactors , 1987 .

[54]  境 正一郎 The theory of W[*]-algebras , 1962 .

[55]  John von Neumann,et al.  Approximative properties of matrices of high finite order , 1942 .

[56]  On II1 factors arising from 2-cocycles of w-rigid groups , 2004, math/0401139.

[57]  Saharon Shelah,et al.  A Dichotomy for the number of Ultrapowers , 2010, J. Math. Log..

[58]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[59]  U. Haagerup,et al.  The Effros-Maréchal topology in the space of von Neumann algebras , 1998 .

[60]  ABOUT THE QWEP CONJECTURE , 2003, math/0306067.

[61]  L. Ge,et al.  CENTRAL SEQUENCE ALGEBRAS OF VON NEUMANN ALGEBRAS , 2006 .

[62]  L. Barnett Free product von Neumann algebras of type , 1995 .