Labeling Cytosolic Targets in Live Cells with Blinking Probes.

With the advent of superresolution imaging methods, fast dynamic imaging of biological processes in live cells remains a challenge. A subset of these methods requires the cellular targets to be labeled with spontaneously blinking probes. The delivery and specific targeting of cytosolic targets and the control of the probes' blinking properties are reviewed for three types of blinking probes: quantum dots, synthetic dyes, and fluorescent proteins.

[1]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[2]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Atsushi Miyawaki,et al.  Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter , 2005, EMBO reports.

[4]  Shuming Nie,et al.  Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry , 2007, Nature Protocols.

[5]  Mark Bates,et al.  Short-range spectroscopic ruler based on a single-molecule optical switch. , 2005, Physical review letters.

[6]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2002, The Journal of Biological Chemistry.

[7]  George S. B. Williams,et al.  Stimulated Emission Depletion Live-Cell Super-Resolution Imaging Shows Proliferative Remodeling of T-Tubule Membrane Structures After Myocardial Infarction , 2012, Circulation research.

[8]  Yohanns Bellaiche,et al.  Tracking individual kinesin motors in living cells using single quantum-dot imaging. , 2006, Nano letters.

[9]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[10]  J. Piehler,et al.  Selective targeting of fluorescent nanoparticles to proteins inside live cells. , 2011, Angewandte Chemie.

[11]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[12]  K Dane Wittrup,et al.  Monovalent, reduced-size quantum dots for imaging receptors on living cells , 2008, Nature Methods.

[13]  Jun Yin,et al.  Site specific protein labeling by enzymatic posttranslational modification. , 2009, Organic & biomolecular chemistry.

[14]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[15]  Hedi Mattoussi,et al.  Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins , 2006, Nature Protocols.

[16]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[17]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[18]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[19]  Shimon Weiss,et al.  Aromatic aldehyde and hydrazine activated peptide coated quantum dots for easy bioconjugation and live cell imaging. , 2011, Bioconjugate chemistry.

[20]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[21]  Shimon Weiss,et al.  Superresolution optical fluctuation imaging with organic dyes. , 2010, Angewandte Chemie.

[22]  Viola Vogel,et al.  Binding-activated localization microscopy of DNA structures. , 2011, Nano letters.

[23]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[24]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[25]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[26]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[27]  Michael A. Teitell,et al.  Photothermal nanoblade for patterned cell membrane cutting , 2010, Optics express.

[28]  Teruyuki Nagamune,et al.  High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[29]  Mike Heilemann,et al.  Photoswitching microscopy with standard fluorophores , 2008 .

[30]  Albert Siryaporn,et al.  Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells , 2012, Molecular microbiology.

[31]  Peter Dedecker,et al.  Widely accessible method for superresolution fluorescence imaging of living systems , 2012, Proceedings of the National Academy of Sciences.

[32]  Chenglong Xia,et al.  Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes , 2012, Proceedings of the National Academy of Sciences.

[33]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[34]  Stefan W. Hell,et al.  Nanoscopy in a Living Mouse Brain , 2012, Science.

[35]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[36]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[37]  Matthew D. Lew,et al.  Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus , 2011, Proceedings of the National Academy of Sciences.

[38]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[39]  M. Bruchez,et al.  Labeling cellular targets with semiconductor quantum dot conjugates. , 2004, Methods in cell biology.

[40]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[41]  Shimon Weiss,et al.  Stable, compact, bright biofunctional quantum dots with improved peptide coating. , 2012, The journal of physical chemistry. B.

[42]  Igor L. Medintz,et al.  Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[43]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[44]  Travis J Gould,et al.  Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. , 2011, Biophysical journal.

[45]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[46]  M. Bruchez,et al.  Fluorogenic Dendrons with Multiple Donor Chromophores as Bright Genetically Targeted and Activated Probes , 2010, Journal of the American Chemical Society.

[47]  Shimon Weiss,et al.  Dynamic Partitioning of a Glycosyl‐Phosphatidylinositol‐Anchored Protein in Glycosphingolipid‐Rich Microdomains Imaged by Single‐Quantum Dot Tracking , 2009, Traffic.

[48]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[49]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[50]  Shimon Weiss,et al.  SOFI-based 3D superresolution sectioning with a widefield microscope , 2012, Optical Nanoscopy.

[51]  S. Hell,et al.  Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.

[52]  M. Dahan,et al.  Imaging the lateral diffusion of membrane molecules with quantum dots , 2007, Nature Protocols.

[53]  Daniele Gerion,et al.  Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and , 2004 .

[54]  S. Weiss,et al.  Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI) , 2010, Optics express.

[55]  Paul R Selvin,et al.  Single-molecule-based super-resolution images in the presence of multiple fluorophores. , 2011, Nano letters.

[56]  James A J Fitzpatrick,et al.  Fluorogen-activating single-chain antibodies for imaging cell surface proteins , 2008, Nature Biotechnology.

[57]  Ming-Qun Xu,et al.  Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging , 2011, Chembiochem : a European journal of chemical biology.

[58]  A. Marcus,et al.  Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. , 2007, Journal of the American Chemical Society.

[59]  G Walter,et al.  "Safe" Coulomb excitation of 30Mg. , 2005, Physical review letters.

[60]  Taekjip Ha,et al.  Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. , 2012, Annual review of physical chemistry.

[61]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[62]  Mike Heilemann,et al.  Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[63]  Konstantin A Lukyanov,et al.  Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. , 2010, Chemistry & biology.

[64]  M. Field,et al.  Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations , 2008, Proceedings of the National Academy of Sciences.

[65]  S. Hell,et al.  Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. , 2010, Biophysical journal.

[66]  J. J. Macklin,et al.  Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution , 2011, Proceedings of the National Academy of Sciences.

[67]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M. Teitell,et al.  Photothermal nanoblade for large cargo delivery into mammalian cells , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[69]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[70]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[71]  M. Bruchez,et al.  STED nanoscopy in living cells using Fluorogen Activating Proteins. , 2009, Bioconjugate chemistry.

[72]  J. Lippincott-Schwartz,et al.  Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. , 2010, Journal of the American Chemical Society.

[73]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[74]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[75]  Christophe Zimmer,et al.  Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe , 2011, PloS one.

[76]  S. Hell,et al.  Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell , 2008, Proceedings of the National Academy of Sciences.

[77]  Theo Lasser,et al.  Comparison between SOFI and STORM , 2011, Biomedical optics express.

[78]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[79]  B. Cohen,et al.  Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids. , 2010, Nano letters.

[80]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[81]  Sandra J Rosenthal,et al.  Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates. , 2005, Methods in molecular biology.

[82]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[83]  Sangeeta N. Bhatia,et al.  Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking , 2004 .

[84]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[85]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[86]  Christian Eggeling,et al.  Nanoscopy of Living Brain Slices with Low Light Levels , 2012, Neuron.

[87]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[88]  Cherisse R. Loucks,et al.  Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria , 2011, Science.

[89]  S. Hess,et al.  Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. , 2012, Angewandte Chemie.

[90]  Igor L. Medintz,et al.  Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. , 2008, Bioconjugate chemistry.

[91]  Sebastian van de Linde,et al.  Live-cell dSTORM with SNAP-tag fusion proteins. , 2011, Nature methods.

[92]  Shuming Nie,et al.  Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. , 2008, Journal of the American Chemical Society.

[93]  M. Davidson,et al.  Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination , 2012, Proceedings of the National Academy of Sciences.

[94]  M. Gustafsson,et al.  Super-resolution 3D microscopy of live whole cells using structured illumination , 2011, Nature Methods.

[95]  F. Pinaud,et al.  High affinity scFv-hapten pair as a tool for quantum dot labeling and tracking of single proteins in live cells. , 2008, Nano letters.

[96]  H. Vogel,et al.  Labeling of fusion proteins with synthetic fluorophores in live cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[97]  T. Lasser,et al.  Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI) , 2012, Optical Nanoscopy.

[98]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[99]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[100]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Yan Zhang Microinjection technique and protocol to single cells , 2007 .

[102]  Igor L. Medintz,et al.  Fluoroimmunoassays using antibody-conjugated quantum dots. , 2005, Methods in molecular biology.

[103]  Hari Shroff,et al.  Resolution Doubling in Live, Multicellular Organisms via Multifocal Structured Illumination Microscopy , 2012, Nature Methods.

[104]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[105]  Jan Vogelsang,et al.  Make them blink: probes for super-resolution microscopy. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[106]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[107]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[108]  Rita Casadio,et al.  Transglutaminases: nature's biological glues. , 2002, The Biochemical journal.

[109]  M. Teitell,et al.  Nanoblade delivery and incorporation of quantum dot conjugates into tubulin networks in live cells. , 2012, Nano letters.

[110]  Gael Moneron,et al.  Nanoscopy in a living multicellular organism expressing GFP. , 2011, Biophysical journal.

[111]  H. Kruth,et al.  Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. , 2009, The Journal of clinical investigation.

[112]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[113]  Hari Shroff,et al.  Advances in the speed and resolution of light microscopy , 2008, Current Opinion in Neurobiology.