HEK293S Cells Have Functional Retinoid Processing Machinery

Rhodopsin activation is measured by the early receptor current (ERC), a conformation-associated charge motion, in human embryonic kidney cells (HEK293S) expressing opsins. After rhodopsin bleaching in cells loaded with 11-cis-retinal, ERC signals recover in minutes and recurrently over a period of hours by simple dark adaptation, with no added chromophore. The purpose of this study is to investigate the source of ERC signal recovery in these cells. Giant HEK293S cells expressing normal wild-type (WT)-human rod opsin (HEK293S) were regenerated by solubilized 11-cis-retinal, all-trans-retinal, or Vitamin A in darkness. ERCs were elicited by flash photolysis and measured by whole-cell recording. Visible flashes initially elicit bimodal (R1, R2) ERC signals in WT-HEK293S cells loaded with 11-cis-retinal for 40 min or overnight. In contrast, cells regenerated for 40 min with all-trans-retinal or Vitamin A had negative ERCs (R1-like) or none at all. After these were placed in the dark overnight, ERCs with outward R2 signals were recorded the following day. This indicates conversion of loaded Vitamin A or all-trans-retinal into cis-retinaldehyde that regenerated ground-state pigment. 4-butylaniline, an inhibitor of the mammalian retinoid cycle, reversibly suppressed recovery of the outward R2 component from Vitamin A and 11-cis-retinal–loaded cells. These physiological findings are evidence for the presence of intrinsic retinoid processing machinery in WT-HEK293S cells similar to what occurs in the mammalian eye.

[1]  H. Stieve,et al.  Direct correlation between the R2 component of the early receptor potential and the formation of Metarhodopsin II in the excised bovine retina , 2004, Biophysics of structure and mechanism.

[2]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[3]  P. Sieving,et al.  Mutations in the gene encoding lecithin retinol acyltransferase are associated with early-onset severe retinal dystrophy , 2001, Nature Genetics.

[4]  J. M. Sullivan,et al.  All-trans-retinal forms a visible-absorbing pigment with human rod opsin. , 2001, Biochemistry.

[5]  J. Hurley,et al.  Visual Cycle Impairment in Cellular Retinaldehyde Binding Protein (CRALBP) Knockout Mice Results in Delayed Dark Adaptation , 2001, Neuron.

[6]  K. Prof,et al.  Crystal structure of rhodopsin: a G protein-coupled receptor. Palczewski K,*(1) kumasaka T, hori T, behnke CA, motoshima H, fox BA, trong IL, teller DC, okada T, stenkamp RE, yamamoto M, miyano M. Science 2000;289:739-745 , 2002, American journal of ophthalmology.

[7]  D. Bok,et al.  Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: reduced expression of lecithin:retinol acyltransferase in carcinoma lines. , 2000, Carcinogenesis.

[8]  Y. Miyake,et al.  A high association with cone dystrophy in Fundus albipunctatus caused by mutations of the RDH5 gene. , 2000, Investigative ophthalmology & visual science.

[9]  Y. Tano,et al.  Mutations in the 11-cis retinol dehydrogenase gene in Japanese patients with Fundus albipunctatus. , 2000, Investigative ophthalmology & visual science.

[10]  K. Palczewski,et al.  Isomerization of all-trans-retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. , 2000, Biochemistry.

[11]  K. Palczewski,et al.  Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. , 2000, The Journal of biological chemistry.

[12]  T. Aleman,et al.  Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man , 2000, Visual Neuroscience.

[13]  K. Palczewski,et al.  X-Ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. , 2000, Journal of structural biology.

[14]  A. Romert,et al.  Gene structure, expression analysis, and membrane topology of RDH4. , 2000, Experimental cell research.

[15]  A. Adler,et al.  Human interphotoreceptor matrix contains serum albumin and retinol-binding protein. , 2000, Experimental eye research.

[16]  J. M. Sullivan,et al.  Electrical approach to study rhodopsin activation in single cells with early receptor current assay. , 2000, Methods in enzymology.

[17]  J. Sullivan,et al.  Development of stable cell lines expressing high levels of point mutants of human opsin for biochemical and biophysical studies. , 2000, Methods in enzymology.

[18]  W. Blaner,et al.  Biochemical properties, tissue expression, and gene structure of a short chain dehydrogenase/ reductase able to catalyze cis-retinol oxidation. , 1999, Journal of lipid research.

[19]  J. M. Sullivan,et al.  Normal and Mutant Rhodopsin Activation Measured with the Early Receptor Current in a Unicellular Expression System , 1999, The Journal of general physiology.

[20]  J. M. Sullivan,et al.  Time-resolved rhodopsin activation currents in a unicellular expression system. , 1999, Biophysical journal.

[21]  R. Crouch,et al.  Identification of RPE65 in transformed kidney cells1 , 1999, FEBS letters.

[22]  J. Storch,et al.  Differential Mechanisms of Retinoid Transfer from Cellular Retinol Binding Proteins Types I and II to Phospholipid Membranes* , 1999, The Journal of Biological Chemistry.

[23]  M. Gelb,et al.  Preferential Release of 11-cis-retinol from Retinal Pigment Epithelial Cells in the Presence of Cellular Retinaldehyde-binding Protein* , 1999, Journal of Biological Chemistry.

[24]  U. Eriksson,et al.  Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue. , 1999, The Biochemical journal.

[25]  D. Bok,et al.  Molecular and Biochemical Characterization of Lecithin Retinol Acyltransferase* , 1999, The Journal of Biological Chemistry.

[26]  D. Bok,et al.  Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle , 1998, Nature Genetics.

[27]  Jack M. Sullivan,et al.  Low-cost monochromatic microsecond flash microbeam apparatus for single-cell photolysis of rhodopsin or other photolabile pigments , 1998 .

[28]  L. Lebioda,et al.  Molecular Characterization of a Novel Short-chain Dehydrogenase/Reductase That Reduces All-trans-retinal* , 1998, The Journal of Biological Chemistry.

[29]  N. Noy,et al.  Cellular Retinaldehyde-binding Protein Ligand Interactions , 1998, The Journal of Biological Chemistry.

[30]  K. Palczewski,et al.  Reduction of all-trans-retinal limits regeneration of visual pigment in mice , 1998, Vision Research.

[31]  A. Romert,et al.  The identification of a 9-cis retinol dehydrogenase in the mouse embryo reveals a pathway for synthesis of 9-cis retinoic acid. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Fulton,et al.  Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or leber congenital amaurosis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Willsky,et al.  Renal drug metabolism. , 1998, Pharmacological reviews.

[34]  R. Rando,et al.  Regulation of isomerohydrolase activity in the visual cycle. , 1998, Biochemistry.

[35]  A. Fulton,et al.  Mutations in the RPE 65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis , 1998 .

[36]  D. Higgins,et al.  Coexpression of the mRNAs encoding retinol dehydrogenase isozymes and cellular retinol‐binding protein , 1997, Journal of cellular physiology.

[37]  E. Zrenner,et al.  Mutations in RPE65 cause Leber's congenital amaurosis , 1997, Nature Genetics.

[38]  Birgit Lorenz,et al.  Mutations in RPE65 cause autosomal recessive childhood–onset severe retinal dystrophy , 1997, Nature Genetics.

[39]  J. Crabb,et al.  Mutation of the gene encoding cellular retinaldehyde–binding protein in autosomal recessive retinitis pigmentosa , 1997, Nature Genetics.

[40]  R. Blomhoff,et al.  Retinol-binding Protein and Asialo-orosomucoid Are Taken Up by Different Pathways in Liver Cells (*) , 1995, The Journal of Biological Chemistry.

[41]  U. Hellman,et al.  The Retinal Pigment Epithelial-specific 11-cis Retinol Dehydrogenase Belongs to the Family of Short Chain Alcohol Dehydrogenases (*) , 1995, The Journal of Biological Chemistry.

[42]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[43]  N. Noy,et al.  Control of substrate flow at a branch in the visual cycle. , 1994, Biochemistry.

[44]  J. Mcdowell 7 - Preparing Rod Outer Segment Membranes, Regenerating Rhodopsin, and Determining Rhodopsin Concentration , 1993 .

[45]  R. Rando MOLECULAR MECHANISMS IN VISUAL PIGMENT REGENERATION , 1992, Photochemistry and photobiology.

[46]  D. Baylor,et al.  Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. , 1991, The Journal of physiology.

[47]  R. Rando Membrane phospholipids as an energy source in the operation of the visual cycle. , 1991, Biochemistry.

[48]  K. Nakanishi,et al.  Substrate specificities and mechanism in the enzymatic processing of vitamin A into 11-cis-retinol. , 1990, Biochemistry.

[49]  P. Gouras,et al.  Synthesis of retinoids by human retinal epithelium and transfer to rod outer segments. , 1990, The Biochemical journal.

[50]  N. Noy,et al.  Thermodynamic parameters of the binding of retinol to binding proteins and to membranes. , 1990, Biochemistry.

[51]  J. Nathans,et al.  Production of bovine rhodopsin by mammalian cell lines expressing cloned cDNA: Spectrophotometry and subcellular localization , 1989, Vision Research.

[52]  G. Chader,et al.  Interphotoreceptor retinoid-binding protein: role in delivery of retinol to the pigment epithelium. , 1989, Experimental eye research.

[53]  F. Cañada,et al.  Solubilization and partial purification of retinyl ester synthetase and retinoid isomerase from bovine ocular pigment epithelium. , 1989, The Journal of biological chemistry.

[54]  K. Donner,et al.  Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.

[55]  P. Gouras,et al.  Retinoid metabolism in cultured human retinal pigment epithelium. , 1988, The Biochemical journal.

[56]  P. Bernstein,et al.  Biochemical characterization of the retinoid isomerase system of the eye. , 1987, The Journal of biological chemistry.

[57]  R. Rando,et al.  Biosynthesis of 11-cis-retinoids and retinyl esters by bovine pigment epithelium membranes. , 1987, Biochemistry.

[58]  P. Bernstein,et al.  Mechanism of action of aromatic amines that short-circuit the visual cycle. , 1986, Biochemistry.

[59]  P. Bernstein,et al.  Short-circuiting the visual cycle with retinotoxic aromatic amines. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Stillman,et al.  Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells , 1985, Molecular and cellular biology.

[61]  F. Crescitelli Some properties of solubilized human rhodopsin. , 1985, Experimental eye research.

[62]  P. Bernstein,et al.  Nonstereospecific biosynthesis of 11-cis-retinal in the eye. , 1985, Biochemistry.

[63]  J. Horwitz,et al.  Evidence for a common batho-intermediate in the bleaching of rhodopsin and isorhodopsin , 1984, Vision Research.

[64]  P. Liebman,et al.  Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. , 1984, Biochemistry.

[65]  A. Kini,et al.  Seven new hindered isomeric rhodopsins: A reexamination of the stereospecificity of the binding site of bovine opsin , 1984 .

[66]  R. Rando,et al.  STUDIES ON THE CATALYZED INTERCONVERSIONS OF VITAMIN A DERIVATIVES , 1983 .

[67]  Fred J. Sigworth,et al.  Fitting and Statistical Analysis of Single-Channel Records , 1983 .

[68]  J. C. Saari,et al.  Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. , 1982, The Journal of biological chemistry.

[69]  J. C. Saari,et al.  Enzymatic reduction of 11-cis-retinal bound to cellular retinal-binding protein. , 1982, Biochimica et biophysica acta.

[70]  G. Groenendijk,et al.  Dark isomerization of retinals in the presence of phosphatidylethanolamine. , 2005, European journal of biochemistry.

[71]  D. Baylor,et al.  Two components of electrical dark noise in toad retinal rod outer segments. , 1980, The Journal of physiology.

[72]  D. Baylor,et al.  Thermal activation of the visual transduction mechanism in retinal rods , 1979, Nature.

[73]  T. Yoshizawa,et al.  Recognition of opsin to the longitudinal length of retinal isomers in the formation of rhodopsin , 1978, Vision Research.

[74]  D. Albert,et al.  Cellular retinol- and retinoic acid-binding proteins in transformed mammalian cells. , 1978, Investigative ophthalmology & visual science.

[75]  F. Graham,et al.  Characteristics of a human cell line transformed by DNA from human adenovirus type 5. , 1977, The Journal of general virology.

[76]  C. Bridges Rhodopsin regeneration in rod outer segments: utilization of 11-cis retinal and retinol. , 1977, Experimental eye research.

[77]  V. Ramamurthy,et al.  Rhodopsin analogues from highly hindered 7-cis isomers of retinal , 1976, Nature.

[78]  D. Page,et al.  Retinoic acid binding protein: occurrence in human tumors , 1975, Science.

[79]  J. Rotmans,et al.  Biochemical aspects of the visual process. XXVII. Stereospecificity of ocular retinol dehydrogenases and the visual cycle. , 1970, Biochimica et biophysica acta.

[80]  T. Williams,et al.  Upper limits to the bleaching of rhodopsin by high intensity flashes. , 1974, Vision research.

[81]  S. Futterman,et al.  The stability of 11-cis-retinal and reactivity toward nucleophiles , 1974 .

[82]  S. Futterman Recent studies on a possible mechanism for visual pigment regeneration. , 1974, Experimental eye research.

[83]  S. Futterman,et al.  The catalytic isomerization of all-trans-retinal to 9-cis-retinal and 13-cis-retinal. , 1973, The Journal of biological chemistry.

[84]  I. Ostapenko,et al.  9-Cis isomerization of all-trans retinal during in vitro regeneration of visual pigment. , 1973, Nature: New biology.

[85]  J. Rotmans,et al.  Biochemical aspects of the visual process. XIX. Formation of isorhodopsin from photolyzed rhodopsin by bacterial action. , 1972, Biochimica et biophysica acta.

[86]  T. Ebrey The thermal decay of the intermediates of rhodopsin in situ. , 1968, Vision research.

[87]  R. Cone Early Receptor Potential: Photoreversible Charge Displacement in Rhodopsin , 1967, Science.

[88]  T. Williams,et al.  Rhodopsin bleaching: relative effectiveness of high and low intensity flashes. , 1965, Vision research.

[89]  T. Williams,et al.  Photoreversal of Rhodopsin Bleaching , 1964, The Journal of general physiology.

[90]  Hagins Wa The quantum efficiency of bleaching of rhodopsin in situ. , 1955 .

[91]  The quantum efficiency of bleaching of rhodopsin in situ. , 1955, The Journal of physiology.

[92]  G. Wald,et al.  CIS-TRANS ISOMERS OF VITAMIN A AND RETINENE IN THE RHODOPSIN SYSTEM , 1952, The Journal of general physiology.