Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

[1]  Hatem Fessi,et al.  Double emulsion solvent evaporation techniques used for drug encapsulation. , 2015, International journal of pharmaceutics.

[2]  Song Li,et al.  Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. , 2015, Biomaterials.

[3]  B. Min,et al.  Stimuli-Responsive Injectable In situ-Forming Hydrogels for Regenerative Medicines , 2015 .

[4]  Chunsheng Xiao,et al.  Versatile preparation of intracellular-acidity-sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. , 2015, Biomaterials.

[5]  J. Ji,et al.  Doxorubicin conjugated phospholipid prodrugs as smart nanomedicine platforms for cancer therapy. , 2015, Journal of materials chemistry. B.

[6]  E. Sharon,et al.  Exploiting the critical perioperative period to improve long-term cancer outcomes , 2015, Nature Reviews Clinical Oncology.

[7]  J. Barralet,et al.  Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. , 2015, Biomaterials.

[8]  H. Lee,et al.  Thermo-Responsive Injectable MPEG-Polyester Diblock Copolymers for Sustained Drug Release , 2014 .

[9]  Wenqi Wu,et al.  A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery. , 2014, Molecular pharmaceutics.

[10]  Chaoliang He,et al.  PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. , 2014, Biomaterials.

[11]  A. Guastella,et al.  5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: implications for practice. , 2014, Clinical journal of oncology nursing.

[12]  Eben Alsberg,et al.  Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. , 2014, Progress in polymer science.

[13]  Prashanth M. Thalanayar,et al.  Melanoma adjuvant therapy. , 2014, Hematology/oncology clinics of North America.

[14]  J. Stebbing,et al.  Molecular basis of 5-fluorouracil-related toxicity: lessons from clinical practice. , 2014, Anticancer research.

[15]  D. Sargent,et al.  Overview: biostatistician's role in oncology clinical trials-strive for sound, efficient and practical studies. , 2014, Chinese clinical oncology.

[16]  Jiashen Li,et al.  A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. , 2013, Biomaterials.

[17]  J. H. Kim,et al.  Injectable intratumoral hydrogel as 5-fluorouracil drug depot. , 2013, Biomaterials.

[18]  Tao Wan,et al.  Preliminary pharmacology of galactosylated chitosan/5-fluorouracil nanoparticles and its inhibition of hepatocellular carcinoma in mice , 2012, Cancer biology & therapy.

[19]  Jae-Ho Kim,et al.  Injectable in situ-forming hydrogels for a suppression of drug burst from drug-loaded microcapsules , 2012 .

[20]  Jiwon Kim,et al.  5-fluorouracil induced cardiotoxicity: review of the literature. , 2012, Cardiology journal.

[21]  J. H. Kim,et al.  In vivo efficacy of an intratumorally injected in situ-forming doxorubicin/poly(ethylene glycol)-b-polycaprolactone diblock copolymer. , 2011, Biomaterials.

[22]  Byung Soo Kim,et al.  BSA-FITC-loaded microcapsules for in vivo delivery. , 2009, Biomaterials.

[23]  Kinam Park,et al.  Insulin-loaded microcapsules for in vivo delivery. , 2009, Molecular pharmaceutics.

[24]  Kinam Park,et al.  In vitro and in vivo release of albumin using a biodegradable MPEG-PCL diblock copolymer as an in situ gel-forming carrier. , 2007, Biomacromolecules.

[25]  Lothar Lilge,et al.  The Distribution of the Anticancer Drug Doxorubicin in Relation to Blood Vessels in Solid Tumors , 2005, Clinical Cancer Research.