Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce

[1]  R. Jagels,et al.  Morphometric analysis applied to wood structure. I: Cross sectional all shape and area change in red spruce , 2007 .

[2]  S. Linder,et al.  Effect of Growth Rate on Fibre Characteristics in Norway Spruce (Picea abies (L.) Karst.) , 2002 .

[3]  R. Wimmer,et al.  Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes. , 2002, Tree physiology.

[4]  T. Furuno,et al.  Quantitative Analyses of Morphological Variation of Cross-Sectional Tracheids of Hinoki (Chamaecyparis obtusa Endl.) Near Knot by Image Processing , 2002 .

[5]  P. Saranpää,et al.  Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). , 2001, Journal of structural biology.

[6]  G. Daniel,et al.  The use of soft rot fungi for determining the microfibrillar orientation in the S2 layer of pine tracheids , 2001, Holz als Roh- und Werkstoff.

[7]  P. Saranpää,et al.  Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques , 2000, Journal of Wood Science.

[8]  S. Stanzl-Tschegg,et al.  Variation of cellulose microfibril angles in softwoods and hardwoods-a possible strategy of mechanical optimization. , 1999, Journal of structural biology.

[9]  S. Stanzl-Tschegg,et al.  Spiral angle of elementary cellulose fibrils in cell walls ofPicea abies determined by small-angle x-ray scattering , 1998, Wood Science and Technology.

[10]  I. D. Cave Theory of X-ray measurement of microfibril angle in wood , 1997, Wood Science and Technology.

[11]  I. D. Cave Theory of X-ray measurement of microfibril angle in wood , 1997, Wood Science and Technology.

[12]  L. Salmén,et al.  The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis , 1997, Wood Science and Technology.

[13]  Peter Fratzl,et al.  The elementary cellulose fibril in Picea abies : comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results , 1995 .

[14]  Peter Fratzl,et al.  Size and Arrangement of Elementary Cellulose Fibrils in Wood Cells: A Small-Angle X-Ray Scattering Study of Picea abies , 1994 .

[15]  J. Sugiyama,et al.  Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment , 1990 .

[16]  R. Serimaa,et al.  A study of the structure of wood cells by x-ray diffraction , 1984, Wood Science and Technology.

[17]  W. Ruland,et al.  Single and multiple X-ray small-angle scattering of carbon fibres , 1969 .

[18]  I. D. Cave The anisotropic elasticity of the plant cell wall , 1968, Wood Science and Technology.

[19]  M. Bannan CAMBIAL BEHAVIOR WITH REFERENCE TO CELL LENGTH AND RING WIDTH IN THUJA OCCIDENTALIS L. , 1960 .

[20]  A. Heyn Small Particle X‐Ray Scattering by Fibers, Size and Shape of Microcrystallites , 1955 .

[21]  M. Bannan THE FREQUENCY OF ANTICLINAL DIVISIONS IN FUSIFORM CAMBIAL CELLS OF CHAMAECYPARIS , 1950 .

[22]  R. Preston The Organization of the Cell Wall of the Conifer Tracheid , 1934 .

[23]  P. Saranpää,et al.  Variation of Microfibril Angle Between Four Provenances of Sitka Spruce (Picea sitchensis [Bong.] Carr.) , 2002 .

[24]  R. Savidge,et al.  Cell and molecular biology of wood formation , 2000 .

[25]  P. Saranpää,et al.  Variation of the properties of tracheids in Norway spruce (Picea abies (L.) Karst) , 1999 .

[26]  R Evans,et al.  木材でのミクロフィブリル角のX線回折測定法による算定への分散近似法 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[27]  P. Fratzl,et al.  Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. , 1998 .

[28]  James W. Evans,et al.  Influence of Cambial Age and Growth Conditions on Microfibril Angle in Young Norway Spruce (Picea abies [L.] Karst.) , 1998 .

[29]  P. Dutilleul,et al.  Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies) , 1998 .

[30]  H. Pereira,et al.  Clonal variation in wood quality and growth in young Sitka spruce (Picea sitchensis (Bong.) Xarr.) : Estimation of quantitative genetic parameters and index selection for improved pulpwood , 1998 .

[31]  P. Saranpää,et al.  Variation of microfibril angle of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) - comparing x-ray diffraction and optical methods , 1998 .

[32]  E. T. Choong,et al.  Variation In Cell Dimensions and Fibril Angle For Two Fertilized Even-Aged Loblolly Pine Plantations , 1996 .

[33]  Prof. Dr. Bruce J. Zobel,et al.  Genetics of Wood Production , 1995, Springer Series in Wood Science.

[34]  J. C. F. Walker,et al.  Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. , 1994 .

[35]  E. Falkenhagen Parent tree variation in Sitka spruce provenances, an example of fine geographic variation. , 1978 .

[36]  R. D. Preston,et al.  The physical biology of plant cell walls , 1975 .

[37]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[38]  P. Hakkila Investigations on the basic density of finnish pine, spruce and birch wood. , 1966 .

[39]  B. Meylan,et al.  The Influence of Microfibril Angle on Longitudinal and Tangential Shrinkage in Pinus radiata , 1965 .

[40]  U. Sahlberg,et al.  The fibrillar orientation in the S 2-1 ayer of wood fibres as determined by X-ray diffraction analysis , 2022 .