Polar Embedded Catmull-Clark Subdivision Surface

In this paper, a new subdivision scheme for Polar embedded Catmull-Clark mesh structure is presented. The ripple effect commonly found at high-valence extraordinary points of a CCS surface is improved by replacing high-valence CCS extraordinary faces with triangular Polar faces. The new scheme is valence independent and is stationary. By using the same subdivision mask on both the quadrilateral part and the triangular part, artifacts that have been noticed before (mismatching subdivision masks, exponentially increased Valence at Polar extraordinary points by the recursive subdivision process) are resolved. Test results show that with the new scheme, one can generate very high quality, curvature continuous subdivision surfaces on the triangular part. Combined with current CCS G2 schemes, one can generate high quality subdivision surfaces appropriate for most engineering applications on any Polar embedded Catmull-Clark control meshes.

[1]  Jörg Peters,et al.  Pairs of bi-cubic surface constructions supporting polar connectivity , 2008, Comput. Aided Geom. Des..

[2]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[3]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[4]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[5]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[6]  Jörg Peters,et al.  Bi-3 C2 polar subdivision , 2009, ACM Trans. Graph..

[7]  Scott Schaefer,et al.  On C2 triangle/quad subdivision , 2005, TOGS.

[8]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[9]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[10]  Adi Levin Modified subdivision surfaces with continuous curvature , 2006, ACM Trans. Graph..

[11]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[12]  Fuhua Cheng,et al.  Similarity based interpolation using Catmull–Clark subdivision surfaces , 2006, The Visual Computer.

[13]  MylesAshish,et al.  Bi-3 C2 polar subdivision , 2009 .

[14]  Jörg Peters,et al.  Curvature-continuous bicubic subdivision surfaces for polar configurations , 2008 .

[15]  Ashish Myles,et al.  Bi-3 C 2 polar subdivision , 2009, SIGGRAPH 2009.

[16]  Jörg Peters,et al.  Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..

[17]  Jörg Peters,et al.  Bicubic polar subdivision , 2007, TOGS.

[18]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[19]  Jörg Peters,et al.  Combining 4- and 3-direction subdivision , 2004, ACM Trans. Graph..

[20]  Jörg Peters,et al.  An Introduction to Guided and Polar Surfacing , 2008, MMCS.

[21]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[22]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.