On the Potential for CO2 Mineral Storage in Continental Flood Basalts—PHREEQC Batch- and 1D Diffusion-Reaction Simulations

[1]  D. Hoyt,et al.  Multiphase Sequestration Geochemistry: Model for Mineral Carbonation , 2011 .

[2]  S. Self,et al.  Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation , 2010 .

[3]  Sam Holloway,et al.  Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option , 2005 .

[4]  P. F. Martin,et al.  Brucite [Mg(OH2)] carbonation in wet supercritical CO2: An in situ high pressure X-ray diffraction study , 2011 .

[5]  S. Gíslason,et al.  The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C , 2004 .

[6]  S. Gíslason,et al.  Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature , 2003 .

[7]  A. D. King,et al.  Solubility of water in compressed carbon dioxide, nitrous oxide, and ethane. Evidence for hydration of carbon dioxide and nitrous oxide in the gas phase , 1971 .

[8]  John L. Bradshaw,et al.  CO2 storage capacity estimation: Methodology and gaps , 2007 .

[9]  Mason B. Tomson,et al.  Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs temperature , 1992 .

[10]  L. N. Plummer,et al.  Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure , 1989 .

[11]  O. Pokrovsky,et al.  Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins , 2009 .

[12]  J. Dandurand,et al.  Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100 °C and 0 to 50 atm pCO2 , 2009 .

[13]  Herbert T. Schaef,et al.  Carbonate mineralization of volcanic province basalts , 2010 .

[14]  Stefan Bachu,et al.  Geological Sequestration of Anthropogenic Carbon Dioxide in the Western Canada Sedimentary Basin: Suitability Analysis , 2002 .

[15]  S. Arnórsson,et al.  POROSITY EVOLUTION AND MINERAL PARAGENESIS DURING LOW-GRADE METAMORPHISM OF BASALTIC LAVAS AT TEIGARHORN, EASTERN ICELAND , 1999 .

[16]  Sigurdur R. Gislason,et al.  Mineral Carbonation of CO2 , 2008 .

[17]  H. Helgeson,et al.  Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions - I. Thermodynamic relations , 1968 .

[18]  Eric H. Oelkers,et al.  Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2 sequestration in basaltic rocks , 2009 .

[19]  James J. Dooley,et al.  Potential for carbon dioxide sequestration in flood basalts , 2006 .

[20]  P. Aagaard,et al.  On the potential of CO2–water–rock interactions for CO2 storage using a modified kinetic model , 2011 .

[21]  F. Mackenzie,et al.  Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution , 1996 .

[22]  A. T. Owen,et al.  Basalt- CO2–H2O interactions and variability in carbonate mineralization rates , 2009 .

[23]  F. Mackenzie,et al.  The dolomite problem; control of precipitation kinetics by temperature and saturation state , 1999 .

[24]  S. Gíslason,et al.  An experimental study of crystalline basalt dissolution from 2 ⩽ pH ⩽ 11 and temperatures from 5 to 75 °C , 2011 .

[25]  E. Oelkers,et al.  Magnesite growth rates as a function of temperature and saturation state , 2009 .

[26]  S. Brantley,et al.  The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? , 2003 .

[27]  L. Land Failure to Precipitate Dolomite at 25 °C fromDilute Solution Despite 1000-Fold Oversaturation after32 Years , 1998 .

[28]  M. Velbel Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates , 1993 .

[29]  A. Gysi,et al.  Numerical modelling of CO2-water-basalt interaction , 2008, Mineralogical Magazine.

[30]  B. Peter McGrail,et al.  Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide , 2009 .

[31]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[32]  A. N. Sabirzyanov,et al.  Solubility of Water in Supercritical Carbon Dioxide , 2002 .

[33]  S. Gíslason,et al.  Dissolution of primary minerals in natural waters , 2001 .