Using meshfree approximation for multi‐asset American options

Abstract We study the applicability of meshfree approximation schemes for the solution of multi‐asset American option problems. In particular, we consider a penalty method which allows us to remove the free and moving boundary by adding a small and continuous penalty term to the Black‐Scholes equation. Time discretization is achieved by a linearly implicit θ method. A comparison with results obtained recently by two of the authors using a linearly implicit finite difference method is included.

[1]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[2]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[3]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[4]  Bengt Fornberg,et al.  Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..

[5]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[6]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[7]  Carsten Franke,et al.  Convergence order estimates of meshless collocation methods using radial basis functions , 1998, Adv. Comput. Math..

[8]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[9]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[10]  C. S. Chen,et al.  On the use of boundary conditions for variational formulations arising in financial mathematics , 2001, Appl. Math. Comput..

[11]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[12]  E FasshauerG Approximate moving least-squares approximation for time-dependent PDEs , 2002 .

[13]  Y. C. Hon,et al.  A quasi-radial basis functions method for American options pricing , 2002 .

[14]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[15]  D. A. Voss,et al.  A linearly implicit predictor-corrector method for reaction-diffusion equations , 1999 .

[16]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[17]  Gabriele Steidl,et al.  Rapid evaluation of radial functions by Fast Fourier Transforms at nonequispaced knots , 2002 .

[18]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.