A review of acoustic energy harvesting

Acoustic energy is an important form of energy which is generated and unused all around us. Despite the prevalence of acoustic energy a major challenge of energy harvesting is the low power density in typical acoustic noise fields. With a larger focus on green energy, acoustic energy is one of the vastly available energy sources and so harvesting this energy plays an important role in research. Unconventionally a thermoacoustic engine converts thermal energy to acoustic energy via its core, comprising a porous material that is sandwiched between two heat exchangers. The induced acoustic wave can be converted into electricity by introducing novel environment friendly energy converters. Integration of the thermoacoustic technology with piezoelectricity tends to be promising, since the piezoelectric ceramics are sensitive and operating efficiently at high frequencies. Thermoacoustic technology is receiving growing interest in research for its many advantages, such as having no moving parts, being environment friendly and the possibility of using other renewable energy for its operation. This paper aims at providing a review on various acoustic and thermoacoustic energy harvesting techniques and the maximum power generated from each of these techniques.

[1]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[2]  Konstantin I. Matveev,et al.  Acoustic energy harvesting from vortex-induced tonal sound in a baffled pipe , 2011 .

[3]  Ercang Luo,et al.  Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator , 2011 .

[4]  Lien-Wen Chen,et al.  Acoustic energy harvesting using resonant cavity of a sonic crystal , 2009 .

[5]  T. Yazaki,et al.  TRAVELING WAVE THERMOACOUSTIC ENGINE IN A LOOPED TUBE , 1998 .

[6]  K. T. Feldman,et al.  Review of the literature on Rijke thermoacoustic phenomena , 1968 .

[7]  G. Swift,et al.  A thermoacoustic-Stirling heat engine: detailed study , 2000, The Journal of the Acoustical Society of America.

[8]  Jaeyun Lee,et al.  A study on the piezoelectric energy conversion system using motor vibration , 2012 .

[9]  Stefano Basagni,et al.  Mobile Ad Hoc Networking , 2010 .

[10]  Konstantin I. Matveev,et al.  On the Coupling Between Standing-Wave Thermoacoustic Engine and Piezoelectric Transducer , 2007 .

[11]  Chae Hoon Sohn,et al.  A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators , 2011 .

[12]  Bumkyoo Choi,et al.  A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers , 2013 .

[13]  P. H. Riley,et al.  Development and Assessment of Thermoacoustic Generators Operating by Waste Heat from Cooking Stove , 2012 .

[14]  Yong-Joe Kim,et al.  Acoustic Energy Harvesting Using Quarter-Wavelength Straight-Tube Resonator , 2012 .

[15]  Amr M. Baz,et al.  Energy harvesting from a standing wave thermoacoustic-piezoelectric resonator , 2012 .

[16]  Daniel Guyomar,et al.  Nonlinear optimization of acoustic energy harvesting using piezoelectric devices. , 2010, The Journal of the Acoustical Society of America.

[17]  Amr M. Baz,et al.  Analysis and optimization of thermoacoustic-piezoelectric energy harvesters: an electrical circuit analogy approach , 2013, Smart Structures.

[18]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[19]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[20]  Qiu Limin,et al.  Working characteristics of Stirling-type thermoacoustic engine connected with linear alternator , 2013 .

[21]  Toshikazu Nishida,et al.  A MEMS acoustic energy harvester , 2006 .

[22]  Konstantin I. Matveev,et al.  Modular system for studying tonal sound excitation in resonators with heat addition and mean flow. , 2012, The Journal of the Acoustical Society of America.

[23]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[24]  Jedol Dayou,et al.  Increasing the output from piezoelectric energy harvester using width-split method with verification , 2013 .

[25]  Jannatul Ferdous,et al.  Generation of usable electric power from available random sound energy , 2013, 2013 International Conference on Informatics, Electronics and Vision (ICIEV).

[26]  Ercang Luo,et al.  A 100 W-class traveling-wave thermoacoustic electricity generator , 2008 .

[27]  Kwok Hung Li,et al.  A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks , 2013 .

[28]  Doo-Man Chun,et al.  Perspective to green manufacturing and applications , 2013 .

[29]  Jeong Ho You,et al.  Harvesting ambient acoustic energy using acoustic resonators , 2011 .

[30]  Richard Raspet,et al.  Thermoacoustic power conversion using a piezoelectric transducer. , 2010, The Journal of the Acoustical Society of America.

[31]  Toyokatsu Miyashita,et al.  Sonic crystals and sonic wave-guides , 2005 .

[32]  Marco Conti,et al.  Mobile Ad-hoc Networking - Minitrack Introduction , 2001, HICSS.

[33]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[34]  Wen Tong Chong,et al.  Exhaust air energy recovery system for electrical power generation in future green cities , 2013 .

[35]  Andrew Truitt,et al.  A review on active wind energy harvesting designs , 2013 .

[36]  Action Nechibvute,et al.  Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors , 2012 .

[37]  Lien-Wen Chen,et al.  Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions , 2009 .

[38]  Wei Chung Wang,et al.  Acoustic energy harvesting by piezoelectric curved beams in the cavity of a sonic crystal , 2010 .

[39]  Dan Zhao,et al.  Waste thermal energy harvesting from a convection-driven Rijke–Zhao thermo-acoustic-piezo system , 2013 .

[40]  K. Ngo,et al.  Acoustic energy harvesting using an electromechanical Helmholtz resonator. , 2008, The Journal of the Acoustical Society of America.

[41]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[42]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[43]  H. Kaebernick Green manufacturing, fundamentals and applications , 2014 .

[44]  J. H. You,et al.  Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator , 2013 .

[45]  Dan Zhao,et al.  Energy harvesting from a convection-driven Rijke-Zhao thermoacoustic engine , 2012 .

[46]  O. Symko,et al.  Helmholtz-like resonators for thermoacoustic prime movers. , 2009, The Journal of the Acoustical Society of America.

[47]  Fei Liu,et al.  A multiple degree of freedom electromechanical Helmholtz resonator. , 2007, The Journal of the Acoustical Society of America.

[48]  Bin Li,et al.  Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator , 2013 .

[49]  S. Gelfand Essentials of Audiology , 1997 .

[50]  Jin-Ho Lee,et al.  An electromagnetic energy scavenger from direct airflow , 2009 .

[51]  Amr M. Baz,et al.  Energy Harvester with a Dynamic Magnifier , 2011 .

[52]  Scott Backhaus,et al.  Traveling-wave thermoacoustic electric generator , 2004 .

[53]  Lien-Wen Chen,et al.  Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal , 2009 .

[54]  Zhanghua Wu,et al.  A solar-powered traveling-wave thermoacoustic electricity generator , 2012 .

[55]  Konstantin I. Matveev,et al.  Study of a small-scale standing-wave thermoacoustic engine , 2010 .

[56]  M. Sheplak,et al.  Characterization of a Compliant-Backplate Helmholtz Resonator for An Electromechanical Acoustic Liner , 2002 .

[57]  S. Sherrit,et al.  The physical acoustics of energy harvesting , 2008, 2008 IEEE Ultrasonics Symposium.

[58]  Farid Ullah Khan,et al.  Acoustic-Based Electrodynamic Energy Harvester for Wireless Sensor Nodes Application , 2013 .

[59]  Jia-Yi Yeh,et al.  Application and Analysis of Phononic Crystal Energy Harvesting Devices , 2013 .

[60]  Bin Li,et al.  Harvesting low-frequency acoustic energy using multiple PVDF beam arrays in quarter-wavelength acoustic resonator , 2013 .

[61]  Mihail M. Sigalas,et al.  Defect states of acoustic waves in a two-dimensional lattice of solid cylinders , 1998 .

[62]  Sung-Hoon Ahn,et al.  Preface for a special issue on green manufacturing and applications , 2012 .

[63]  G. Swift,et al.  A thermoacoustic Stirling heat engine , 1999, Nature.

[64]  R. Chanaud Effects Of Geometry On The Resonance Frequency Of Helmholtz Resonators , 1994 .

[65]  D. M. Campbell,et al.  Springer Handbook of Acoustics , 2015 .

[66]  W. P. Arnott,et al.  Thermoacoustic engines , 1991, IEEE 1991 Ultrasonics Symposium,.

[67]  Scott Backhaus,et al.  Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy , 2012 .

[68]  Jan M. Rabaey,et al.  Energy scavenging for wireless sensor networks , 2003 .

[69]  Xuhan Zhang,et al.  A traveling-wave thermoacoustic electric generator with a variable electric R-C load , 2013 .

[70]  Scott Backhaus,et al.  A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine , 2010 .

[71]  Alper Erturk,et al.  Energy harvesting from hydraulic pressure fluctuations , 2013 .

[72]  Wei He,et al.  Enhanced Acoustic Energy Harvesting Using Coupled Resonance Structure of Sonic Crystal and Helmholtz Resonator , 2013 .

[73]  Dan Zhao,et al.  Self-selected, Self-excited Combustion Oscillations in a Rijke-Zhao Tube , 2012 .

[74]  G. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators , 2017 .

[75]  Amr M. Baz,et al.  Energy Harvesting of Thermoacoustic-Piezo Systems With a Dynamic Magnifier , 2012 .

[76]  Alper Erturk,et al.  Transduction as energy conversion: Harvesting of acoustic energy in hydraulic systems , 2013 .

[77]  G. W. Swift,et al.  Seawater as a working fluid for thermoacoustic engines , 1988 .