Strategies for increased donor electrical activity in germanium (opto-) electronic materials: a review

ABSTRACT Germanium is one of the strongest candidate materials for next generation integrated optoelectronic devices owing to its high carrier mobilities, bandgap at the telecom wavelength of 1.55 μm, and monolithic (CMOS) integration with silicon. However, for device applications requiring very high carrier concentrations, such as solid state lasers and MOSFETs, a persistent technological hurdle is the limited electrically active concentration ∼5×1019 cm−3 observed in n-type material, regardless of the chemical concentration of incorporated donors above this. This is due to the formation of donor-vacancy clusters, which electrically compensate the material and enhance dopant diffusivity. In recent years, multiple strategies have attempted to address this, with some, albeit limited, success. Here we outline some of the more novel approaches and provide a review with particular emphasis on one of the more promising of these: the co-implantation of donors with fluorine, and discuss potential methods for optimizing this process.

[1]  E. Mazur,et al.  N Type Doping of Strained Epitaxial Germanium Films Using Ion Implantation Followed by Nanosecond Pulse Laser Melting , 2015 .

[2]  L. Kimerling,et al.  Point defect states in Sb-doped germanium , 2015 .

[3]  Y. Ishikawa,et al.  Post-Growth Laser Annealing for High-Performance Ge Photodiodes on Si , 2014 .

[4]  G. Capellini,et al.  Invited; Alternative High n-Type Doping Techniques in Germanium , 2014 .

[5]  V. L. Thanh,et al.  Molecular-beam epitaxial growth of tensile-strained and n-doped Ge/Si(001) films using a GaP decomposition source , 2014 .

[6]  G. Fortunato,et al.  N-type doping of Ge by As implantation and excimer laser annealing , 2014 .

[7]  H. Bracht,et al.  Diffusion of n-type dopants in germanium , 2014 .

[8]  H. Bracht Defect engineering in germanium , 2014 .

[9]  C. Campbell,et al.  Defect complexes in fluorine-implanted germanium , 2013 .

[10]  H. Mubarek Reduction of phosphorus diffusion in germanium by fluorine implantation , 2013 .

[11]  K. Saraswat,et al.  Experimental and theoretical investigation of phosphorus in-situ doping of germanium epitaxial layers , 2013 .

[12]  Michelle Simmons,et al.  Exploring the limits of N-type ultra-shallow junction formation. , 2013, ACS nano.

[13]  H. Tahini,et al.  Co-doping with antimony to control phosphorous diffusion in germanium , 2013 .

[14]  A. Chroneos Defect engineering strategies for germanium , 2013, Journal of Materials Science: Materials in Electronics.

[15]  A. Janotti,et al.  Dangling bonds and vacancies in germanium , 2013 .

[16]  H. Bracht,et al.  Point defect engineering strategies to retard phosphorous diffusion in germanium. , 2013, Physical chemistry chemical physics : PCCP.

[17]  E. Simoen,et al.  On the diffusion and activation of n-type dopants in Ge , 2012 .

[18]  V. Djara,et al.  Fluorine implantation in germanium for dopant diffusion control , 2012 .

[19]  J. Michel,et al.  High active carrier concentration in n-type, thin film Ge using delta-doping , 2012 .

[20]  D. Sadana,et al.  Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit , 2012 .

[21]  K. Saraswat,et al.  Fluorine passivation of vacancy defects in bulk germanium for Ge metal-oxide-semiconductor field-effect transistor application , 2012 .

[22]  J. Michel,et al.  High phosphorous doped germanium: Dopant diffusion and modeling , 2012 .

[23]  F. Priolo,et al.  Fluorine in Ge: Segregation and EOR-defects stabilization , 2012 .

[24]  R. Kurps,et al.  Phosphorus Atomic Layer Doping in Ge Using RPCVD , 2012, 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM).

[25]  G. Capellini,et al.  Phosphorus atomic layer doping of germanium by the stacking of multiple δ layers , 2011, Nanotechnology.

[26]  E. Tutuc,et al.  High-Performance Ge nMOSFETs With $\hbox{n}^{+}\hbox{-} \hbox{p}$ Junctions Formed by “Spin-On Dopant” , 2011, IEEE Electron Device Letters.

[27]  F. Priolo,et al.  Fluorine effect on As diffusion in Ge , 2011 .

[28]  K. Saraswat,et al.  High n-Type Antimony Dopant Activation in Germanium Using Laser Annealing for $\hbox{n}^{+}/\hbox{p}$ Junction Diode , 2011, IEEE Electron Device Letters.

[29]  Stephen W. Bedell,et al.  Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus , 2011 .

[30]  H. Bracht,et al.  Suppression of donor-vacancy clusters in germanium by concurrent annealing and irradiation , 2011 .

[31]  Y. Nishi,et al.  High performance germanium n-MOSFET with antimony dopant activation beyond 1×1020 cm−3 , 2010, 2010 International Electron Devices Meeting.

[32]  Changcun Li,et al.  Effects of fluorine incorporation on the properties of Ge p-MOS capacitors with HfTiON dielectric , 2010 .

[33]  R. Duffy,et al.  The formation, stability, and suitability of n-type junctions in germanium formed by solid phase epitaxial recrystallization , 2010 .

[34]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[35]  N. Cherkashin,et al.  Amorphization, recrystallization and end of range defects in germanium , 2010 .

[36]  Daniel Mathiot,et al.  Modeling of phosphorus diffusion in Ge accounting for a cubic dependence of the diffusivity with the electron concentration , 2010 .

[37]  E. Simoen,et al.  Millisecond flash lamp annealing of shallow implanted layers in Ge , 2009 .

[38]  Mitsuru Takenaka,et al.  High performance GeO2/Ge nMOSFETs with source/drain junctions formed by gas phase doping , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[39]  H. Bracht,et al.  Fluorine codoping in germanium to suppress donor diffusion and deactivation , 2009 .

[40]  N. Cherkashin,et al.  Modeling and experiments on diffusion and activation of phosphorus in germanium , 2009 .

[41]  B. Uberuaga,et al.  Engineering the free vacancy and active donor concentrations in phosphorus and arsenic double donor-doped germanium , 2008 .

[42]  T. Kanashima,et al.  Characteristics improvement of HfO2/Ge gate stack structure by fluorine treatment of germanium surface , 2008 .

[43]  Mingbin Yu,et al.  Effects of fluorine incorporation and forming gas annealing on high-k gated germanium metal-oxide-semiconductor with GeO2 surface passivation , 2008 .

[44]  E. Haller,et al.  Diffusion and defect reactions between donors, C, and vacancies in Ge. I. Experimental results , 2008 .

[45]  Mingbin Yu,et al.  High-k gate stack on germanium substrate with fluorine incorporation , 2008 .

[46]  H. Bracht,et al.  Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium , 2008 .

[47]  V. Torres,et al.  Strong compensation of n-type Ge via formation of donor-vacancy complexes , 2007 .

[48]  B. Uberuaga,et al.  Vacancy-arsenic clusters in germanium , 2007 .

[49]  B. Uberuaga,et al.  Carbon, dopant, and vacancy interactions in germanium , 2007 .

[50]  V. Torres,et al.  Early stage donor-vacancy clusters in germanium , 2007 .

[51]  A. Satta,et al.  Formation of germanium shallow junction by flash annealing , 2007 .

[52]  K. Tatsumura,et al.  Diffusion and activation of n-type dopants in germanium , 2007, cond-mat/0703708.

[53]  H. Bracht Self-and foreign-atom diffusion in semiconductor isotope heterostructures. I. Continuum theoretical calculations , 2007 .

[54]  O. Richard,et al.  In Situ Phosphorus Doping of Germanium by APCVD , 2006 .

[55]  M. Posselt,et al.  Competition between damage buildup and dynamic annealing in ion implantation into Ge , 2006 .

[56]  A. Satta,et al.  Diffusion, activation, and regrowth behavior of high dose P implants in Ge , 2006 .

[57]  A. Satta,et al.  P implantation doping of Ge: Diffusion, activation, and recrystallization , 2006 .

[58]  T. Edgar,et al.  Origin of vacancy and interstitial stabilization at the amorphous-crystalline Si interface , 2004 .

[59]  V. V. Emtsev,et al.  Electronic properties of antimony-vacancy complex in Ge crystals , 2004 .

[60]  C. O. Chui,et al.  Activation and diffusion studies of ion-implanted p and n dopants in germanium , 2003 .

[61]  G. Hobler,et al.  Status and open problems in modeling of as-implanted damage in silicon , 2003 .

[62]  J. Beeman,et al.  The constellation-X focal plane microcalorimeter array: An NTD-germanium solution , 2002 .

[63]  A. Larsen,et al.  Irradiation-induced defects in Ge studied by transient spectroscopies , 2000 .

[64]  J. Keinonen,et al.  Identification of vacancy charge states in diffusion of arsenic in germanium , 2000 .

[65]  Eugene E. Haller,et al.  Neutron transmutation doping of isotopically engineered Ge , 1994 .

[66]  O. W. Holland,et al.  Comparative study of implantation-induced damage in GaAs and Ge: Temperature and flux dependence , 1991 .

[67]  W. Kaiser,et al.  Energy Levels and Photoconductivity in Electron-Bombarded Germanium , 1954 .

[68]  B. Colombeau,et al.  Strong Diffusion Suppression of Low Energy–Implanted Phosphorous in Germanium by N2 Co-Implantation , 2015 .

[69]  F. Priolo,et al.  Role of F on the Electrical Activation of As in Ge , 2012 .

[70]  D. Giubertoni,et al.  Nitrogen Implantation and Diffusion in Crystalline Germanium: Implantation Energy, Temperature and Ge Surface Protection Dependence , 2012 .

[71]  F. Trumbore,et al.  Solid solubilities of impurity elements in germanium and silicon , 1960 .