Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters

Abstract Accurate determination of the photovoltaic (PV) cell parameters is vital to predict the actual power generation capacity under different working circumstances. With the availability of numerous methods, analytical techniques are extensively used because of their simplicity, quickness, and accuracy. The analytical methods are not without limitation, which often arises due to the various assumptions and operating conditions. For benchmarking purposes, a critical analysis of the limitations and validity of the assumptions is needed to help researchers to select the most suitable and reliable method to access the PV systems and produce reliable data on the electricity production capacity. In this regard, various limitations and the validity of assumptions associated with the commonly used analytical methods have been discussed, critically analyzed, and assessed for their compatibility in different types of PV devices. Furthermore, the assumptions of the methods are examined for single-junction silicon PV cell, InGaP/GaAs/Ge multi-junction PV cell, and single-junction silicon PV module (for various damped-heat dose). The assumptions of most of the analytical methods are well valid for the Si PV cell up to the illumination level of 5 suns. However, these assumptions are found invalid for the degraded PV module. Under normal illumination, the methods based on multiple I–V curves are found to provide more accurate PV cell parameters. However, the methods based on single I–V curve are suitable at higher illumination conditions.

[1]  A. Mette,et al.  A review and comparison of different methods to determine the series resistance of solar cells , 2007 .

[2]  G. Araújo,et al.  A new method for experimental determination of the series resistance of a solar cell , 1982, IEEE Transactions on Electron Devices.

[3]  A. Hovinen Fitting of the solar cell IV-curve to the two diode model , 1994 .

[4]  A. Hadj Arab,et al.  Performance of PV water pumping systems , 1999 .

[5]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[6]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[7]  Giuseppina Ciulla,et al.  A comparison of different one-diode models for the representation of I–V characteristic of a PV cell , 2014 .

[8]  Hiranmay Saha,et al.  An improved technique for the determination of solar cell parameters , 1992 .

[9]  Alon Kuperman,et al.  An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel , 2014 .

[10]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[11]  Elena Maria Tresso,et al.  Characterization of photovoltaic modules for low-power indoor application , 2013 .

[12]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[13]  N. Enebish,et al.  Numerical analysis of solar cell current-voltage characteristics , 1993 .

[14]  Florencia Almonacid,et al.  Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques , 2016 .

[15]  Javier Cubas,et al.  On the analytical approach for modeling photovoltaic systems behavior , 2014 .

[16]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[17]  N. Boutana,et al.  Assessment of implicit and explicit models for different photovoltaic modules technologies , 2017 .

[18]  Y. Errami,et al.  Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: A comparative study , 2016 .

[19]  Efstratios I. Batzelis Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment , 2019, Energies.

[20]  R Khezzar,et al.  Modeling improvement of the four parameter model for photovoltaic modules , 2014 .

[21]  F. Khan,et al.  Determination of the diode parameters of a-Si and CdTe solar modules using variation of the intensity of illumination: An application , 2011 .

[22]  T. Saga Advances in crystalline silicon solar cell technology for industrial mass production , 2010 .

[23]  Alena Bleicher,et al.  Geothermal heat pumps and the vagaries of subterranean geology: Energy independence at a household level as a real world experiment , 2016 .

[24]  Determination of organic solar cell parameters based on single or multiple pin structures , 2009 .

[25]  Enio Pedone Bandarra Filho,et al.  Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data , 2018 .

[26]  Daniel T. Cotfas,et al.  Methods to determine the dc parameters of solar cells: A critical review , 2013 .

[27]  Mikhail Sorin,et al.  Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point , 2011 .

[28]  S. Karmalkar,et al.  A Physically Based Explicit $J$ – $V$ Model of a Solar Cell for Simple Design Calculations , 2008, IEEE Electron Device Letters.

[29]  Jae Hyun Kim,et al.  Extraction of diode parameters of silicon solar cells under high illumination conditions , 2013 .

[30]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[31]  Håvard Breisnes Vika Modelling of Photovoltaic Modules with Battery Energy Storage in Simulink/Matlab: With in-situ measurement comparisons , 2014 .

[32]  B. N. Brahmi,et al.  New Method of Parameters Extraction of the Solar Panels , 2018 .

[33]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[34]  Temitope Raphael Ayodele,et al.  Evaluation of numerical algorithms used in extracting the parameters of a single-diode photovoltaic model , 2016 .

[35]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[36]  Joseph Appelbaum,et al.  Dependence of multi-junction solar cells parameters on concentration and temperature , 2014 .

[37]  M. K. El-Adawi,et al.  A method to determine the solar cell series resistance from a single I–V. Characteristic curve considering its shunt resistance—new approach , 2001 .

[38]  Ralf Preu,et al.  Series resistance characterization of industrial silicon solar cells with screen‐printed contacts using hotmelt paste , 2007 .

[39]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[40]  H. Hao,et al.  A state-of-the-art review on the vibration mitigation of wind turbines , 2020 .

[41]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[42]  Hongxing Yang,et al.  Solar photovoltaic system modeling and performance prediction , 2014 .

[43]  Inkyu Lee,et al.  Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges , 2019, Renewable and Sustainable Energy Reviews.

[44]  J. A. del Cueto,et al.  Method for analyzing series resistance and diode quality factors from field data of photovoltaic modules , 1998 .

[45]  J. Shewchun,et al.  A better approach to the evaluation of the series resistance of solar cells , 1979 .

[46]  Otwin Breitenstein,et al.  A two-diode model regarding the distributed series resistance , 2013 .

[47]  Tamer Khatib,et al.  A comparative study of evolutionary algorithms and adapting control parameters for estimating the parameters of a single-diode photovoltaic module's model , 2016 .

[48]  Trishan Esram Modeling and control of an alternating-current photovoltaic module , 2010 .

[49]  Sofiane Kichou,et al.  Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification , 2016 .

[50]  Sukhvir Singh,et al.  A new method of determination of series and shunt resistances of silicon solar cells , 2007 .

[51]  A. Das An explicit J–V model of a solar cell for simple fill factor calculation , 2011 .

[52]  Jun-Young Park,et al.  A novel datasheet-based parameter extraction method for a single-diode photovoltaic array model , 2015 .

[53]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[54]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[55]  Mohammad Reza Azizian,et al.  On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules , 2014, IEEE Journal of Photovoltaics.

[56]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[57]  D. Carroll,et al.  Evaluation of methods to extract parameters from current–voltage characteristics of solar cells , 2013 .

[58]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[59]  S. K. Agarwal,et al.  A new method for the measurement of series resistance of solar cells , 1981 .

[60]  Pinar Mert Cuce,et al.  An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters , 2013 .

[61]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[62]  M. Chegaar,et al.  A new method for evaluating illuminated solar cell parameters , 2001 .

[63]  Carlos Andrés Ramos-Paja,et al.  A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel , 2017, Math. Comput. Simul..

[64]  B. J. Brinkworth,et al.  Evaluation of Two Theoretical Models in Simulating the Performance of Amorphous - Silicon Solar Cells , 1991 .

[65]  Ahmad Al-Subhi,et al.  Parameters estimation of photovoltaic cells using simple and efficient mathematical models , 2020 .

[66]  Meng Wu,et al.  A New Gap Function for Vector Variational Inequalities with an Application , 2013, J. Appl. Math..

[67]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[68]  E. Radziemska Dark I–U–T measurements of single crystalline silicon solar cells , 2005 .

[69]  Rustu Eke,et al.  A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values , 2017 .

[70]  Omar I. Awad,et al.  Modeling of PV system and parameter extraction based on experimental data: Review and investigation , 2020 .

[71]  F. Asdrubali,et al.  Latest advances on solar thermal collectors: A comprehensive review , 2019, Renewable and Sustainable Energy Reviews.

[72]  Efstratios I. Batzelis,et al.  A Method for the Analytical Extraction of the Single-Diode PV Model Parameters , 2016, IEEE Transactions on Sustainable Energy.

[73]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[74]  Firoz Khan,et al.  Effect of illumination intensity on cell parameters of a silicon solar cell , 2010 .

[75]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[76]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[77]  M. Chegaar,et al.  Solar cells parameters evaluation considering the series and shunt resistance , 2007 .

[78]  Weidong Xiao,et al.  A novel modeling method for photovoltaic cells , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[79]  A. Massi Pavan,et al.  Explicit empirical model for general photovoltaic devices: Experimental validation at maximum power point , 2014 .

[80]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[81]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[82]  Fei Yu,et al.  An explicit method to extract fitting parameters in lumped-parameter equivalent circuit model of industrial solar cells , 2020 .

[83]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[84]  J. Phillips,et al.  Accurate analytical method for the extraction of solar cell model parameters , 1984 .

[85]  Elizabeth Thomsen,et al.  Spectral beam splitting for efficient conversion of solar energy - A review , 2013 .

[86]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[87]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[88]  Joan Cabestany,et al.  Evaluation of solar cell parameters by nonlinear algorithms , 1983 .

[89]  M. Vitelli,et al.  Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems , 2012 .

[90]  N. Ravindra,et al.  Temperature dependence of solar cell performance—an analysis , 2012 .

[91]  C. L. Garrido-Alzar Algorithm for extraction of solar cell parameters from I–V curve using double exponential model , 1997 .

[92]  P. Mialhe,et al.  Consistency of the double exponential model with physical mechanisms of conduction for a solar cell under illumination , 1985 .

[93]  J. A. del Cueto Method for analyzing series resistance and diode quality factors from field data Part II: Applications to crystalline silicon , 1999 .

[94]  Ramvir Singh,et al.  A method for the measurement of solar cell series resistance , 1983 .

[95]  R. Gottschalg,et al.  Changes of solar cell parameters during damp‐heat exposure , 2016 .

[96]  Pedro Rodriguez,et al.  PV panel model based on datasheet values , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[97]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[98]  Firoz Khan,et al.  Determination of diode parameters of a silicon solar cell from variation of slopes of the I–V curve at open circuit and short circuit conditions with the intensity of illumination , 2009 .

[99]  Joshua M. Pearce,et al.  Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems , 2014 .

[100]  Yu Zhang,et al.  Development of a new compound method to extract the five parameters of PV modules , 2014 .

[101]  Ali Kareem Abdulrazzaq,et al.  Evaluation of different methods for solar cells/modules parameters extraction , 2020 .

[102]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[103]  J. Appelbaum,et al.  Parameters extraction of solar cells – A comparative examination of three methods , 2014 .

[104]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.