Biembeddings of symmetric configurations and 3-homogeneous Latin trades
暂无分享,去创建一个
[1] Prince Camille de Polignac. On a Problem in Combinations , 1866 .
[2] Amos Altshuler,et al. Construction and enumeration of regular maps on the torus , 1973, Discret. Math..
[3] Seiya Negami,et al. Uniqueness and faithfulness of embedding of toroidal graphs , 1983, Discret. Math..
[4] Seiya Negami,et al. Constructing the Graphs That Triangulate Both the Torus and the Klein Bottle , 1999, J. Comb. Theory, Ser. B.
[5] Arthur T. White,et al. Topological models for classical configurations , 2000 .
[6] Arthur T. White. Modelling finite geometries on surfaces , 2002, Discret. Math..
[7] M. Grannell,et al. Biembeddings of symmetric configurations of triples , 2004 .
[8] Mike J. Grannell,et al. BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.
[9] Nicholas J. Cavenagh,et al. 4-homogeneous Latin Trades , 2005, Australas. J Comb..
[10] Nicholas J. Cavenagh. A uniqueness result for 3-homogeneous latin trades , 2006 .
[11] Mike J. Grannell,et al. Designs and topology , 2007 .
[12] James G. Lefevre,et al. Permutation Representation of 3 and 4-Homogenous Latin Bitrades , 2008, Fundam. Informaticae.
[13] Mike J. Grannell,et al. A constraint on the biembedding of Latin squares , 2009, Eur. J. Comb..