Quantitative control of idealized analysis models of thin designs

When preparing a design model for engineering analysis, model idealization is often used, where defeaturing, and/or local dimension reduction of thin regions, are carried out. This simplifies the analysis, but quantitative estimates of the idealization error, the analysis error caused by this idealization, are necessary if the results are to be of practical use. The paper focuses on a posteriori estimation of such idealization error, via both a theoretical analysis and practical algorithms. Our approach can compute bounds for the errors induced by dimension reduction, defeaturing or both in combination. Performance of our error estimate is demonstrated using examples.

[1]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[2]  Jean-Christophe Cuillière,et al.  Adaptation of CAD model topology for finite element analysis , 2008, Comput. Aided Des..

[3]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[4]  Kyung K. Choi,et al.  Structural sensitivity analysis and optimization , 2005 .

[5]  Kumar Vemaganti,et al.  Hierarchical models of thin elastic structures : Overview and recent advances in error estimation and adaptivity , 2007 .

[6]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[7]  P. Davis Interpolation and approximation , 1965 .

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[10]  Cheolho Ryu,et al.  Transformation of a thin-walled solid model into a surface model via solid deflation , 2010, Comput. Aided Des..

[11]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[12]  Vadim Shapiro,et al.  Geometric Issues in Computer Aided Design/Computer Aided Engineering Integration , 2011, J. Comput. Inf. Sci. Eng..

[13]  Satyandra K. Gupta,et al.  A survey of CAD model simplification techniques for physics-based simulation applications , 2009, Comput. Aided Des..

[14]  M. Ainsworth,et al.  Computable error bounds for some simple dimensionally reduced models on thin domains , 2001 .

[15]  Kumar Vemaganti Local error estimation for dimensionally reduced models of elliptic boundary value problems , 2003 .

[16]  J. Tinsley Oden,et al.  Practical methods for a posteriori error estimation in engineering applications , 2003 .

[17]  L. Remondini,et al.  Automated generation of FEA models through idealization operators , 2000 .

[18]  Franca Giannini,et al.  A posteriori evaluation of simplification details for finite element model preparation , 2009 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[21]  David R. White,et al.  Meshing Complexity of Single Part CAD Models , 2003, IMR.

[22]  Krishnan Suresh,et al.  Defeaturing: A posteriori error analysis via feature sensitivity , 2008 .

[23]  Krishnan Suresh,et al.  An efficient numerical method for computing the topological sensitivity of arbitrary‐shaped features in plate bending , 2009 .

[24]  S. Ohnimus,et al.  Coupled model- and solution-adaptivity in the finite-element method , 1997 .

[25]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[26]  Cecil G. Armstrong,et al.  A small feature suppression/unsuppression system for preparing B-rep models for analysis , 2005, SPM '05.

[27]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[28]  Sang Hun Lee Feature-based multiresolution modeling of solids , 2005, TOGS.

[29]  Ralph R. Martin,et al.  Estimating the effects of removing negative features on engineering analysis , 2011, Comput. Aided Des..

[30]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[31]  Axelle Viré,et al.  Modeling and discretization errors in large eddy simulations of hydrodynamic and magnetohydrodynamic channel flows , 2011, J. Comput. Phys..

[32]  M. Newman,et al.  Interpolation and approximation , 1965 .

[33]  William Roshan Quadros,et al.  Defeaturing CAD models using a geometry-based size field and facet-based reduction operators , 2011, Engineering with Computers.

[34]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[35]  M. Carbonaro,et al.  von Karman Institute for Fluid Dynamics , 2004 .

[36]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[37]  Cecil Armstrong,et al.  Automated mixed dimensional modelling from 2D and 3D CAD models , 2011 .

[38]  Krishnan Suresh,et al.  Feature sensitivity: A generalization of topological sensitivity , 2008 .

[39]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[40]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[41]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .