The Atomic Switch

An atomic switch is a nanoionic device that controls the diffusion of metal ions and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in an ON-state. Since metal atoms can provide a highly conductive channel even if their size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11-nm technology node. Two-terminal atomic switches have the potential for use in memories and programmable switches. Three-terminal atomic switches, where the formation/annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode, work as nonvolatile transistors. Recent development of two-terminal atomic switches that use a metal oxide as the ionic conductive material, in which a metal atomic bridge is formed, has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices. Also introduced are the novel characteristics of atomic switches, such as their small size, low power consumption, low ON-resistance, nonvolatility, and learning abilities.

[1]  Takuro Tamura,et al.  Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide , 2007 .

[2]  W. Marsden I and J , 2012 .

[3]  D. Smith,et al.  Quantum Point Contact Switches , 1995, Science.

[4]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[5]  S. Haddad,et al.  Non-volatile resistive switching for advanced memory applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[6]  T. Hasegawa,et al.  Effect of sulfurization conditions and post-deposition annealing treatment on structural and electrical properties of silver sulfide films , 2006 .

[7]  L. Chua Memristor-The missing circuit element , 1971 .

[8]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[9]  N. Banno,et al.  On-state reliability of solid-electrolyte switch , 2008, 2008 IEEE International Reliability Physics Symposium.

[10]  K. Tsunoda,et al.  Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V , 2007, 2007 IEEE International Electron Devices Meeting.

[11]  Frederick T. Chen,et al.  Bipolar Resistive Switching Memory Using Cu Metallic Filament in Ge0.4Se0.6 Solid Electrolyte , 2010 .

[12]  W. E. Beadle,et al.  Switching properties of thin Nio films , 1964 .

[13]  Jiang Yin,et al.  Resistive switching devices based on nanocrystalline solid electrolyte (AgI)0.5(AgPO3)0.5 , 2007 .

[14]  Rainer Waser,et al.  Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise , 2010 .

[15]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[16]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[17]  Qi Liu,et al.  Multilevel resistive switching with ionic and metallic filaments , 2009 .

[18]  T. Hasegawa,et al.  Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction , 2006 .

[19]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[20]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[21]  T. Hasegawa,et al.  Resistance switching of an individual Ag2S/Ag nanowire heterostructure , 2007 .

[22]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[23]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[24]  Bart J. Kooi,et al.  Polarity-dependent resistance switching in GeSbTe phase-change thin films: The importance of excess Sb in filament formation , 2009 .

[25]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[26]  K. Terabe,et al.  Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch , 2008, IEEE Transactions on Electron Devices.

[27]  Masakazu Aono,et al.  A solid electrolyte nanometer switch , 2006, IEICE Trans. Electron..

[28]  García,et al.  Quantum contact in gold nanostructures by scanning tunneling microscopy. , 1993, Physical review letters.

[29]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[30]  Michael N. Kozicki,et al.  Equivalent circuit modeling of the Ag|As0.24S0.36Ag0.40|Ag system prepared by photodissolution of Ag , 1998 .

[31]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[32]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[33]  Takahiro Hanyu,et al.  Functionally separated, multiple-valued content-addressable memory and its applications , 1995 .

[34]  Yuchao Yang,et al.  Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories: active region and influence of Joule heating , 2010 .

[35]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[36]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[37]  AgI/Ag Heterojunction Nanowires: Facile Electrochemical Synthesis, Photoluminescence, and Enhanced Ionic Conductivity , 2007 .

[38]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[39]  Qi Liu,et al.  Resistive Switching Properties of $\hbox{Au}/ \hbox{ZrO}_{2}/\hbox{Ag}$ Structure for Low-Voltage Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[40]  D. Eigler,et al.  An atomic switch realized with the scanning tunnelling microscope , 1991, Nature.

[41]  Sungjoo Lee,et al.  ? Bipolar resistive switching characteristics of Cu/TaOx/Pt structures , 2010 .

[42]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[43]  Mehdi Mirzayi,et al.  Electrical switching in the MoO3–WO3–P2O5 and MoO3–P2O5 glasses , 2010 .

[44]  Takuro Tamura,et al.  Rate-Limiting Processes Determining the Switching Time in a Ag2S Atomic Switch , 2010 .

[45]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[46]  Wei Wang,et al.  Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device , 2009 .

[47]  N. Kasai,et al.  Highly scalable nonvolatile TiOx/TaSiOy solid-electrolyte crossbar switch integrated in local interconnect for low power reconfigurable logic , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[48]  M. Haemori,et al.  Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion , 2009 .

[49]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[50]  Yidong Xia,et al.  The Resistive Switching Mechanism of Ag / SrTiO3 / Pt Memory Cells , 2010 .

[51]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[52]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[53]  T. Hasegawa,et al.  Effect of sulfurization conditions on structural and electrical properties of copper sulfide films , 2008 .

[54]  K. Aratani,et al.  A Novel Resistance Memory with High Scalability and Nanosecond Switching , 2007, 2007 IEEE International Electron Devices Meeting.

[55]  I. Medvedeva,et al.  Electric-pulse-induced resistance switching in Nd0.7Sr0.3MnO3 ceramics , 2010 .

[56]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[57]  T. Sakamoto,et al.  A nonvolatile programmable solid-electrolyte nanometer switch , 2004, IEEE Journal of Solid-State Circuits.

[58]  L. Y. Chen,et al.  Temperature and Electrode-Size Dependences of the Resistive Switching Characteristics of CuOx Thin Films , 2008 .

[59]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[60]  Masakazu Aono,et al.  Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction , 2002 .

[61]  Chung-Soo Kim,et al.  Metalorganic chemical vapor deposition of non-GST chalcogenide materials for phase change memory applications , 2010 .

[62]  Masakazu Aono,et al.  Off-state and turn-on characteristics of solid electrolyte switch , 2010 .

[63]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.