Investigations into the estimation of tropospheric delay and wet refractivity using GPS measurements

The principal error source in the GPS technology is a delay experienced by the GPS signal in propagating through the electrically neutral atmosphere, usually referred to as a tropospheric delay. This delay is normally calculated in the zenith direction, and is referred to as a zenith tropospheric delay. The delay consists of a zenith hydrostatic delay, which can be modeled accurately using surface barometric measurements, and a zenith wet delay, which cannot be modeled from surface barometric measurements and depends on atmospheric water vapor. In this research presented here, the approach for the production of zenith wet delays from GPS observations is demonstrated. Slant wet delays are recovered for each epoch to all satellites in view assuming that the atmosphere is inhomogeneous. The RMS errors in slant wet delay recovery are found to be about 2-3 cm, through validation of wet delays estimates compared with water vapor radiometer (WVR) " truth " data. Experiments are conducted to determine the optimal processing parameters for estimation of tropospheric delay parameters such as elevation cutoff angle, batch processing interval, and baseline length. Observations of the slant wet delay can be used to model the vertical and horizontal structure of water vapor over a local area. These techniques are based on a tomographic approach using the slant wet delays as input observables, where a 4-D model of the wet refractivity may be derived. Extensive simulations are performed for various vertical resolutions, elevation cutoff angles, and reference station vertical geometries to determine the sensitivity and accuracy of the tomographic solution for a given network. The tomographic technique is tested with real GPS data from the Southern California Integrated GPS Network (SCIGN) to define the wet refractivity in a local network. Results indicate that slant wet delays may be derived from the estimated wet refractivity fields with accuracies of 2-3 cm. iv ACKNOWLEDGEMENTS

[1]  Fritz K. Brunner,et al.  Effect of the troposphere on GPS measurements , 1993 .

[2]  Gunnar Elgered,et al.  Ground‐based measurement of gradients in the “wet” radio refractivity of air , 1993 .

[3]  H. Black An easily implemented algorithm for the tropospheric range correction , 1978 .

[4]  J. K. Ray,et al.  Mitigation of GPS code and carrier phase multipath effects using a multi-antenna system , 2000 .

[5]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[6]  G. Lanyi,et al.  Tropospheric Delay Effects in Radio Interferometry , 1984 .

[7]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[8]  A. Bruton Improving the accuracy and resolution of SINS/DGPS airborne gravimetry , 2000 .

[9]  Barry E. Schwartz,et al.  Using GPS-IPW in a 4-D data assimilation system , 2000 .

[10]  C. Reigber,et al.  Near Real-Time Water Vapor Monitoring in a German GPS Network and Assimilation into Weather Forecast Model , 2001 .

[11]  David N. Whiteman,et al.  Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar , 1992 .

[12]  Y. Bar-Sever Strategies for Near Real Time Estimation of Precipitable Water Vapor , 1996 .

[13]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[14]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[15]  A. Berman The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation , 1976 .

[16]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[17]  A. E. Niell,et al.  Improved atmospheric mapping functions for VLBI and GPS , 2000 .

[18]  H. S. Hopfield Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data , 1971 .

[19]  J. W. Marini,et al.  Correction of Satellite Tracking Data for an Arbitrary Tropospheric Profile , 1972 .

[20]  Timothy H. Dixon,et al.  Some tests of wet tropospheric calibration for the CASA Uno Global Positioning System experiment , 1990 .

[21]  Ernest K. Smith,et al.  The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies , 1953, Proceedings of the IRE.

[22]  Kazuro Hirahara,et al.  Local GPS tropospheric tomography , 2000 .

[23]  Michael J. Rycroft,et al.  Understanding GPS. Principles and Applications , 1997 .

[24]  Christian Rocken,et al.  Near real‐time GPS sensing of atmospheric water vapor , 1997 .

[25]  Antonio Rius,et al.  Spatio-temporal tomography of the lower troposphere using GPS signals , 2001 .

[26]  G. D. Thayer,et al.  An improved equation for the radio refractive index of air , 1974 .

[27]  C. Alber,et al.  Pointed water vapor radiometer corrections for accurate global positioning system surveying , 1993 .

[28]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[29]  A. Rius,et al.  Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory , 2000 .

[30]  Jan M. Johansson,et al.  Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations , 2000 .

[31]  M. Cannon,et al.  Mitigation of Static Carrier Phase Multipath Effects Using Multiple Closely-Spaced Antennas , 1998 .

[32]  Gunnar Elgered,et al.  Horizontal gradients in the wet path delay derived from four years of microwave radiometer data , 2000 .

[33]  Borys Stoew,et al.  GPS observations of daily variations in the atmospheric water vapor content , 2001 .

[34]  P. Jarlemark,et al.  GPS tomography using the permanent network in Goteborg: simulations , 2002, 2002 IEEE Position Location and Navigation Symposium (IEEE Cat. No.02CH37284).

[35]  Stephen M. Lichten,et al.  Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements , 1990 .

[36]  Per Jarlemark,et al.  Atmospheric Delay Estimates from a Ground-Based Real-Time GPS Network , 2001 .

[37]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[38]  R. S. Lawrence,et al.  Theoretical and calculational aspects of the radio refractive index of water vapor , 1982 .

[39]  M. Pondeca,et al.  4D-VAR assimilation of GPS-derived ZTD: a Case Study , 2001 .

[40]  Christian Rocken,et al.  GPS surveying with 1 mm precision using corrections for atmospheric slant path delay , 1997 .

[41]  Gunnar Elgered,et al.  Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay , 1991 .

[42]  James L. Davis Atmospheric water-vapor signals in GPS data: synergies, correlations, signals and errors , 2001 .

[43]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[44]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[45]  Jihong Zhang Investigations into the estimation of residual tropospheric delays in a GPS network , 1999 .

[46]  James L. Davis,et al.  Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data , 1990 .

[47]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[48]  H. S. Hopfield Two- quartic tropospheric refractivity profile for correcting satellite data , 1969 .

[49]  J. Lavergnat,et al.  A model for the tropospheric excess path length of radio waves from surface meteorological measurements , 1988 .

[50]  J. Forbes,et al.  Solar-Terrestrial Physics , 1983 .

[51]  J. Raquet Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers , 1998 .

[52]  N. Florsch,et al.  GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates: a case study in Brittany, France , 2002 .

[53]  Gérard Lachapelle,et al.  Precise Aircraft-to-Aircraft Positioning Using a Multiple Receiver Configuration , 1994 .

[54]  S. Oltmans,et al.  Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994 , 1995, Nature.

[55]  L. Essen,et al.  The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24,000 Mc/s , 1951 .

[56]  Yuei-An Liou,et al.  GPS observations of PW during the passage of a typhoon , 2000 .

[57]  Christian Rocken,et al.  Obtaining single path phase delays from GPS double differences , 2000 .

[58]  I. M. Ifadis A new approach to mapping the atmospheric effect for GPS observations , 2000 .

[59]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[60]  V. Mendes,et al.  Modeling the neutral-atmosphere propagation delay in radiometric space techniques , 1998 .

[61]  Alan Dodson,et al.  Wet tropospheric effects on precise relative GPS height determination , 1996 .

[62]  Hajime Nakamura,et al.  Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front , 2000 .

[63]  A. J. Van,et al.  Theory and Performance of Narrow Correlator Spacing in a GPS Receiver , 1992 .

[64]  Hajime Nakamura,et al.  Semi-diurnal and diurnal variation of errors in GPS precipitable water vapor at Tsukuba, Japan caused by site displacement due to ocean tidal loading , 2000 .

[65]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[66]  T. Moore,et al.  Tropospheric Delay Estimation from a Moving GPS Receiver , 2002 .

[67]  R. Hill,et al.  Dispersion by atmospheric water vapor at frequencies less than 1 THz , 1988 .

[68]  Richard B. Langley,et al.  Analysis of tropospheric delay prediction models: comparisons with ray-tracing and implications for GPS relative positioning , 1991 .

[69]  Giulio Ruffini,et al.  Estimation of Tropospheric Zenith Delay and Gradients over the Madrid Area Using GPS and WVR Data , 1999 .

[70]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[71]  F. Kleijer,et al.  Mapping function induced bias in tropospheric delay estimation using GPS , 2001 .

[72]  Galina Dick,et al.  Near real-time water vapor estimation in a German GPS network-first results from the ground program of the HGF GASP project , 2001 .

[73]  P. Jarlemark,et al.  Strategies for spatial and temporal extrapolation and interpolation of wet delay , 1998 .

[74]  G. Lachapelle,et al.  Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications , 2001 .

[75]  Michael C. Olynik,et al.  Temporal Characteristics of GPS Error Sources and Their Impact on Relative Positioning , 2002 .

[76]  Antonio Rius,et al.  Comparison of software and techniques for water vapor estimation using German near real-time GPS data , 2001 .

[77]  Per Enge,et al.  Ephemeris And Clock Navigation Message Accuracy , 1996 .