Parallel optical negabinary arithmetic based on logic operations.

On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands. The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit.

[1]  Mohammad A. Karim,et al.  Optical higher-order quaternary signed-digit arithmetic , 1994 .

[2]  M Itoh,et al.  Modified signed-digit arithmetic based on redundant bit representation. , 1994, Applied optics.

[3]  M A Karim,et al.  Modified-signed digit arithmetic using an efficient symbolic substitution. , 1988, Applied optics.

[4]  T K Gaylord,et al.  Logical minimization of multilevel coded functions. , 1986, Applied optics.

[5]  Y Li,et al.  Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements. , 1987, Applied optics.

[6]  M S Alam Parallel optical computing using recoded trinary signed-digit numbers. , 1994, Applied optics.

[7]  Kelvin H. Wagner,et al.  Digital computing with optics , 1989 .

[8]  A. K. Datta,et al.  Arithmetic operations in optical computations using a modified trinary number system. , 1989, Optics letters.

[9]  T B Henderson,et al.  Modified signed-digit addition and subtraction using optical symbolic substitution. , 1986, Applied optics.

[10]  H K Liu,et al.  Modified-signed-digit optical computing by using fan-out elements. , 1992, Optics letters.

[11]  R A Athale,et al.  Numerical optical computing in the residue number system with outer-product lookup tables. , 1989, Optics letters.

[12]  Y Li,et al.  Fast hybrid parallel carry look-ahead adder. , 1990, Optics letters.

[13]  Lee-Ming Cheng,et al.  Optical modified signed-digit addition based on binary logical operations , 1994 .

[14]  Yoshiki Ichioka,et al.  Optical logic array processor using shadowgrams , 1983 .

[15]  L Liu,et al.  Negative binary arithmetic algorithms for digital parallel optical computation. , 1994, Optics letters.

[16]  D Casasent,et al.  High-accuracy pipelined iterative-tree optical multiplication. , 1994, Applied optics.

[17]  H K Liu,et al.  Two-stage modified signed-digit optical computing by spatial data encoding and polarization multiplexing. , 1995, Applied optics.

[18]  Susamma Barua Single-stage optical adder/subtractor , 1991 .

[19]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[20]  Mohammad S. Alam,et al.  Real-time optical computing: multiprocessor design , 1994 .

[21]  T Yatagai Optical space-variant logic-gate array based on spatial encoding technique. , 1986, Optics letters.

[22]  M A Karim,et al.  Modified signed-digit trinary arithmetic by using optical symbolic substitution. , 1992, Applied optics.

[23]  S. P. Kozaitis Higher-ordered rules for symbolic substitution , 1988 .

[24]  M S Alam Efficient trinary signed-digit symbolic arithmetic. , 1994, Optics letters.

[25]  A A Awwal Recoded signed-digit binary addition-subtraction using opto-electronic symbolic substitution. , 1992, Applied optics.

[26]  H K Liu,et al.  Modified-signed-digit arithmetic for multi-input digital optical computing. , 1994, Applied optics.