High-frequency asymptotics for the numerical solution of the Helmholtz equation

[1]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[2]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[3]  Ralph A. Stephen,et al.  Comment on “absorbing boundary conditions for acoustic and elastic wave equations,” by R. Clayton and B. Engquist , 1983 .

[4]  W Hohmann Gerald,et al.  Numerical modeling for electromagnetic methods of geophysics , 1987 .

[5]  Olivier Coussy,et al.  Acoustics of Porous Media , 1988 .

[6]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[7]  G. McMechan,et al.  Multifrequency viscoacoustic modeling and inversion , 1996 .

[8]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[9]  Seongjai Kim,et al.  Domain decomposition iterative procedures for solving scalar waves in the frequency domain , 1998 .

[10]  Richard I. Cook,et al.  3-D traveltime computation using second‐order ENO scheme , 1999 .

[11]  Joseph B. Keller,et al.  A hybrid numerical asymptotic method for scattering problems , 2001 .

[12]  Seongjai Kim,et al.  The most-energetic traveltime of seismic waves , 2001, Appl. Math. Lett..

[13]  Seongjai Kim,et al.  An O(N) Level Set Method for Eikonal Equations , 2000, SIAM J. Sci. Comput..

[14]  Seongjai Kim 3-D eikonal solvers: First-arrival traveltimes , 2002 .

[15]  Soohyun Kim,et al.  Multigrid Simulation for High-Frequency Solutions of the Helmholtz Problem in Heterogeneous Media , 2002, SIAM J. Sci. Comput..