High-frequency asymptotics for the numerical solution of the Helmholtz equation
暂无分享,去创建一个
[1] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[2] Einar Kjartansson,et al. Constant Q-wave propagation and attenuation , 1979 .
[3] Ralph A. Stephen,et al. Comment on “absorbing boundary conditions for acoustic and elastic wave equations,” by R. Clayton and B. Engquist , 1983 .
[4] W Hohmann Gerald,et al. Numerical modeling for electromagnetic methods of geophysics , 1987 .
[5] Olivier Coussy,et al. Acoustics of Porous Media , 1988 .
[6] J. Sochacki. Absorbing boundary conditions for the elastic wave equations , 1988 .
[7] G. McMechan,et al. Multifrequency viscoacoustic modeling and inversion , 1996 .
[8] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[9] Seongjai Kim,et al. Domain decomposition iterative procedures for solving scalar waves in the frequency domain , 1998 .
[10] Richard I. Cook,et al. 3-D traveltime computation using second‐order ENO scheme , 1999 .
[11] Joseph B. Keller,et al. A hybrid numerical asymptotic method for scattering problems , 2001 .
[12] Seongjai Kim,et al. The most-energetic traveltime of seismic waves , 2001, Appl. Math. Lett..
[13] Seongjai Kim,et al. An O(N) Level Set Method for Eikonal Equations , 2000, SIAM J. Sci. Comput..
[14] Seongjai Kim. 3-D eikonal solvers: First-arrival traveltimes , 2002 .
[15] Soohyun Kim,et al. Multigrid Simulation for High-Frequency Solutions of the Helmholtz Problem in Heterogeneous Media , 2002, SIAM J. Sci. Comput..