On statistical properties of Jizba–Arimitsu hybrid entropy

[1]  J. Korbel,et al.  Remarks on “Comments on ‘On q-non-extensive statistics with non-Tsallisian entropy’ ” [Physica A 466 (2017) 160] , 2017 .

[2]  J. Korbel,et al.  Tsallis thermostatics as a statistical physics of random chains. , 2016, Physical review. E.

[3]  M. Stankovic,et al.  Comments on "On q-non-extensive statistics with non-Tsallisian entropy" , 2016, 1609.00404.

[4]  Shun-ichi Amari,et al.  Information Geometry and Its Applications , 2016 .

[5]  Mehmet Niyazi Çankaya,et al.  A Bimodal Extension of the Generalized Gamma Distribution , 2015, Revista Colombiana de Estadística.

[6]  J. Korbel,et al.  On q-non-extensive statistics with non-Tsallisian entropy , 2015, 1501.07386.

[7]  T. S. Biro,et al.  New Entropy Formula with Fluctuating Reservoir , 2014, 1405.3813.

[8]  Stefan Thurner,et al.  How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems , 2014, Proceedings of the National Academy of Sciences.

[9]  Petr Jizba,et al.  Multifractal diffusion entropy analysis: Optimal bin width of probability histograms , 2014, 1401.3316.

[10]  M. Stankovic,et al.  Generalized Shannon–Khinchin axioms and uniqueness theorem for pseudo-additive entropies , 2013, 1311.0323.

[11]  Jean-François Bercher,et al.  Some properties of generalized Fisher information in the context of nonextensive thermostatistics , 2013, ArXiv.

[12]  F. Opitz Information geometry and its applications , 2012, 2012 9th European Radar Conference.

[13]  Reinaldo Boris Arellano-Valle,et al.  Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions , 2012, Entropy.

[14]  Jean-François Bercher,et al.  A simple probabilistic construction yielding generalized entropies and divergences, escort distributions and q-Gaussians , 2012, ArXiv.

[15]  Jean-François Bercher,et al.  On generalized Cramér–Rao inequalities, generalized Fisher information and characterizations of generalized q-Gaussian distributions , 2012, ArXiv.

[16]  Piergiulio Tempesta,et al.  Group entropies, correlation laws, and zeta functions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[18]  R. Hanel,et al.  A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions , 2010, 1005.0138.

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  C. Beck Superstatistics, escort distributions, and applications , 2003, cond-mat/0312134.

[21]  P. Jizba,et al.  Generalized statistics: yet another generalization , 2003, cond-mat/0312034.

[22]  P. Jizba,et al.  Observability of Rényi's entropy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  P. Jizba Information Theory and Generalized Statistics , 2003, cond-mat/0301343.

[24]  P. Jizba,et al.  The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.

[25]  D. Harte Multifractals: Theory and Applications , 2001 .

[26]  Andreas Daffertshofer,et al.  Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal , 2000 .

[27]  S. Abe Axioms and uniqueness theorem for Tsallis entropy , 2000, cond-mat/0005538.

[28]  G. S. Mudholkar,et al.  The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .

[29]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[30]  J. D. Ramshaw Entropy ambiguity in a system in equilibrium with a finite heat bath , 1995 .

[31]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[32]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[33]  S. Kullback Information Theory and Statistics , 1959 .

[34]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[35]  R. Hartley Transmission of information , 1928 .

[36]  S. Zacks,et al.  Another look at Huber’s estimator: A new minimax estimator in regression with stochastically bounded noise , 2008 .

[37]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[38]  Wei-Dong Jiang,et al.  Schur-convexity and Schur-geometrically concavity of Gini means , 2009, Comput. Math. Appl..

[39]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[40]  A. Rényi,et al.  Selected papers of Alfréd Rényi , 1976 .