On statistical properties of Jizba–Arimitsu hybrid entropy
暂无分享,去创建一个
[1] J. Korbel,et al. Remarks on “Comments on ‘On q-non-extensive statistics with non-Tsallisian entropy’ ” [Physica A 466 (2017) 160] , 2017 .
[2] J. Korbel,et al. Tsallis thermostatics as a statistical physics of random chains. , 2016, Physical review. E.
[3] M. Stankovic,et al. Comments on "On q-non-extensive statistics with non-Tsallisian entropy" , 2016, 1609.00404.
[4] Shun-ichi Amari,et al. Information Geometry and Its Applications , 2016 .
[5] Mehmet Niyazi Çankaya,et al. A Bimodal Extension of the Generalized Gamma Distribution , 2015, Revista Colombiana de Estadística.
[6] J. Korbel,et al. On q-non-extensive statistics with non-Tsallisian entropy , 2015, 1501.07386.
[7] T. S. Biro,et al. New Entropy Formula with Fluctuating Reservoir , 2014, 1405.3813.
[8] Stefan Thurner,et al. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems , 2014, Proceedings of the National Academy of Sciences.
[9] Petr Jizba,et al. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms , 2014, 1401.3316.
[10] M. Stankovic,et al. Generalized Shannon–Khinchin axioms and uniqueness theorem for pseudo-additive entropies , 2013, 1311.0323.
[11] Jean-François Bercher,et al. Some properties of generalized Fisher information in the context of nonextensive thermostatistics , 2013, ArXiv.
[12] F. Opitz. Information geometry and its applications , 2012, 2012 9th European Radar Conference.
[13] Reinaldo Boris Arellano-Valle,et al. Kullback-Leibler Divergence Measure for Multivariate Skew-Normal Distributions , 2012, Entropy.
[14] Jean-François Bercher,et al. A simple probabilistic construction yielding generalized entropies and divergences, escort distributions and q-Gaussians , 2012, ArXiv.
[15] Jean-François Bercher,et al. On generalized Cramér–Rao inequalities, generalized Fisher information and characterizations of generalized q-Gaussian distributions , 2012, ArXiv.
[16] Piergiulio Tempesta,et al. Group entropies, correlation laws, and zeta functions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Joseph Lipka,et al. A Table of Integrals , 2010 .
[18] R. Hanel,et al. A comprehensive classification of complex statistical systems and an axiomatic derivation of their entropy and distribution functions , 2010, 1005.0138.
[19] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[20] C. Beck. Superstatistics, escort distributions, and applications , 2003, cond-mat/0312134.
[21] P. Jizba,et al. Generalized statistics: yet another generalization , 2003, cond-mat/0312034.
[22] P. Jizba,et al. Observability of Rényi's entropy. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] P. Jizba. Information Theory and Generalized Statistics , 2003, cond-mat/0301343.
[24] P. Jizba,et al. The world according to R enyi: thermodynamics of multifractal systems , 2002, cond-mat/0207707.
[25] D. Harte. Multifractals: Theory and Applications , 2001 .
[26] Andreas Daffertshofer,et al. Exact time-dependent solutions of the Renyi Fokker–Planck equation and the Fokker–Planck equations related to the entropies proposed by Sharma and Mittal , 2000 .
[27] S. Abe. Axioms and uniqueness theorem for Tsallis entropy , 2000, cond-mat/0005538.
[28] G. S. Mudholkar,et al. The epsilon-skew-normal distribution for analyzing near-normal data , 2000 .
[29] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[30] J. D. Ramshaw. Entropy ambiguity in a system in equilibrium with a finite heat bath , 1995 .
[31] C. Beck,et al. Thermodynamics of chaotic systems : an introduction , 1993 .
[32] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[33] S. Kullback. Information Theory and Statistics , 1959 .
[34] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[35] R. Hartley. Transmission of information , 1928 .
[36] S. Zacks,et al. Another look at Huber’s estimator: A new minimax estimator in regression with stochastically bounded noise , 2008 .
[37] Kerstin Vogler,et al. Table Of Integrals Series And Products , 2016 .
[38] Wei-Dong Jiang,et al. Schur-convexity and Schur-geometrically concavity of Gini means , 2009, Comput. Math. Appl..
[39] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[40] A. Rényi,et al. Selected papers of Alfréd Rényi , 1976 .