Magnetic resonance spectroscopic imaging using parallel transmission at 7T

Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible tradeoffs between acquisition time and spatial resolution. In addition, although CSI at higher main field strengths, e.g. 7 Tesla (T), offers improved SNR over clinical 1.5T or 3.0T scanners, the realization of these benefits is limited by severe inhomogeneities of the radio frequency (RF) excitation magnetic field (B1), which is responsible for significant signal variation within the volume of interest (VOI) resulting in spatially dependent SNR losses. The work presented in this dissertation aims to provide the necessary means for using spectroscopic imaging for reliable and robust whole brain metabolite detection and quantification at high main field strengths. It addresses the challenges mentioned above by improving both the excitation and the readout components of the CSI acquisition. The long acquisition times of the PE CSI are significantly shortened (at least 20 fold) by implementing the time-efficient spiral CSI algorithm, while the B1 non-uniformities are corrected for using RF pulses designed for new RF excitation hardware at 7T, so-called parallel transmission (pTx). The B1 homogeneity of the pTx excitations improved at least by a factor of 4 (measured by the normalized spatial standard deviations) compared to conventional single channel transmit systems. The first contribution of this thesis describes the implementation of spiral CSI algorithm for online gradient waveform design and spectroscopic image reconstruction

[1]  Laura I Sacolick,et al.  Adiabatic refocusing pulses for volume selection in magnetic resonance spectroscopic imaging , 2007, Magnetic resonance in medicine.

[2]  P Mansfield,et al.  Spatial mapping of the chemical shift in NMR , 1983, Magnetic resonance in medicine.

[3]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[4]  J. Frahm,et al.  Cerebral metabolism in man after acute stroke: New observations using localized proton NMR spectroscopy , 1989, Magnetic resonance in medicine.

[5]  Adolf Pfefferbaum,et al.  Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. , 2003, AJNR. American journal of neuroradiology.

[6]  P. Matthews,et al.  Thalamic neurodegeneration in multiple sclerosis , 2002, Annals of neurology.

[7]  Yudong Zhu,et al.  Parallel excitation with an array of transmit coils , 2004, Magnetic resonance in medicine.

[8]  A Macovski,et al.  Volumetric NMR imaging with time‐varying gradients , 1985, Magnetic Resonance in Medicine.

[9]  William H. Oldendorf,et al.  N-Acetyl-L-Aspartic acid: A literature review of a compound prominent in 1H-NMR spectroscopic studies of brain , 1989, Neuroscience & Biobehavioral Reviews.

[10]  I. Graesslin,et al.  Real-time SAR Monitoring to ensure Patient Safety for Parallel Transmission Systems , 2007 .

[11]  Douglas C Noll,et al.  Spatial domain method for the design of RF pulses in multicoil parallel excitation , 2006, Magnetic resonance in medicine.

[12]  G. Fein,et al.  Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease , 1997, Neurology.

[13]  N. Schuff,et al.  Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation , 1996, Magnetic resonance in medicine.

[14]  Kensuke Sekihara,et al.  High-speed spatially resolved NMR spectroscopy using phase-modulated spin-echo trains. Expansion of the spectral bandwidth by combined use of delayed spin-echo trains , 1985 .

[15]  A. O. Rodríguez,et al.  Principles of magnetic resonance imaging , 2004 .

[16]  Jens Frahm,et al.  Stimulated echo imaging , 1985 .

[17]  K O Lim,et al.  In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer disease. , 1999, Archives of general psychiatry.

[18]  Alberto Bizzi,et al.  Proton spectroscopic imaging of human brain , 1992 .

[19]  Y Zur Design of improved spectral‐spatial pulses for routine clinical use , 2000, Magnetic resonance in medicine.

[20]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[21]  A. Macovski,et al.  Volumetric spectroscopic imaging with spiral‐based k‐space trajectories , 1998, Magnetic resonance in medicine.

[22]  Saadallah Ramadan,et al.  Neurospectroscopy: the past, present and future. , 2010, Chemical reviews.

[23]  Kensuke Sekihara,et al.  HIGH-SPEED SPATIALLY RESOLVED HIGH-RESOLUTION NMR SPECTROSCOPY , 1985 .

[24]  P. Mansfield,et al.  PEEP—A rapid chemical‐shift imaging method , 1989, Magnetic resonance in medicine.

[25]  W P Dillon,et al.  Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. , 2001, AJNR. American journal of neuroradiology.

[26]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[27]  D M Spielman,et al.  Three‐Dimensional Spectroscopic Imaging with Time‐Varying Gradients , 1995, Magnetic resonance in medicine.

[28]  X Hu,et al.  A new strategy for spectroscopic imaging. , 1994, Journal of magnetic resonance. Series B.

[29]  Y. Zur,et al.  A new adiabatic inversion pulse , 1996, Magnetic resonance in medicine.

[30]  J. Stanley,et al.  In vivo Magnetic Resonance Spectroscopy and its Application to Neuropsychiatric Disorders , 2002, Canadian journal of psychiatry. Revue canadienne de psychiatrie.

[31]  E. Adalsteinsson,et al.  Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels , 2008, Magnetic resonance in medicine.

[32]  R. B. Kingsley,et al.  WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. , 1994, Journal of magnetic resonance. Series B.

[33]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[34]  R. Ordidge,et al.  Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy , 1996, Magnetic resonance in medicine.

[35]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[36]  S. Nelson Multivoxel magnetic resonance spectroscopy of brain tumors. , 2003, Molecular cancer therapeutics.

[37]  Kawin Setsompop,et al.  Broadband slab selection with B  1+ mitigation at 7T via parallel spectral‐spatial excitation , 2009, Magnetic resonance in medicine.

[38]  Daniel M Spielman,et al.  B1 and T1 insensitive water and lipid suppression using optimized multiple frequency‐selective preparation pulses for whole‐brain 1H spectroscopic imaging at 3T , 2009, Magnetic resonance in medicine.

[39]  J A Frank,et al.  Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. , 1992, Radiology.

[40]  B. Miller A review of chemical issues in 1H NMR spectroscopy: N‐acetyl‐l‐aspartate, creatine and choline , 1991, NMR in biomedicine.

[41]  A. Haase,et al.  Snapshot flash mri. applications to t1, t2, and chemical‐shift imaging , 1990, Magnetic resonance in medicine.

[42]  P. Börnert,et al.  Transmit SENSE , 2003, Magnetic resonance in medicine.

[43]  S Sarkar,et al.  A hybrid technique for spectroscopic imaging with reduced truncation artifact. , 1999, Magnetic resonance imaging.

[44]  M W Weiner,et al.  Mapping of lactate and N-acetyl-L-aspartate predicts infarction during acute focal ischemia: in vivo 1H magnetic resonance spectroscopy in rats. , 1996, Neurosurgery.

[45]  Johnpauly A k-Space Analysis of Small-Tip-Angle Excitation , 2012 .

[46]  Vijayanand Alagappan RF coil technology for parallel excitation and reception in high field MRI , 2008 .

[47]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[48]  A. Macovski,et al.  Variable-rate selective excitation , 1988 .

[49]  Michael B. Smith,et al.  Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies , 2005, Magnetic resonance in medicine.

[50]  P. Jolles,et al.  An in vitro 1H nuclear magnetic resonance study of the temporoparietal cortex of Alzheimer brains , 2004, Experimental Brain Research.

[51]  Elfar Adalsteinsson,et al.  Seven-Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy. , 2008, Archives of neurology.

[52]  Christopher J. Hardy,et al.  Efficient adiabatic fast passage for NMR population inversion in the presence of radiofrequency field inhomogeneity and frequency offsets , 1986 .

[53]  Michael B. Smith,et al.  Exploring the limits of RF shimming for high‐field MRI of the human head , 2006, Magnetic resonance in medicine.

[54]  B D Ross,et al.  Absolute Quantitation of Water and Metabolites in the Human Brain. II. Metabolite Concentrations , 1993 .

[55]  Richard Bowtell,et al.  Proton chemical-shift mapping using PREP , 1989 .

[56]  Y Zur,et al.  Design of adiabatic pulses for fat‐suppression using analytic solutions of the bloch equation , 1997, Magnetic resonance in medicine.

[57]  A Kerr,et al.  Consistent fat suppression with compensated spectral‐spatial pulses , 1997, Magnetic resonance in medicine.

[58]  V. Govindaraju,et al.  Proton NMR chemical shifts and coupling constants for brain metabolites , 2000, NMR in biomedicine.

[59]  Joseph Y. Cheng Gradient Characterization in Magnetic Resonance Imaging , 2007 .

[60]  P Webb,et al.  A fast spectroscopic imaging method using a blipped phase encode gradient , 1989, Magnetic resonance in medicine.

[61]  A E Stillman,et al.  Proton MR spectroscopy of childhood adrenoleukodystrophy. , 1996, AJNR. American journal of neuroradiology.

[62]  J S Taylor,et al.  Proton‐decoupled 31P chemical shift imaging of the human brain in normal volunteers , 1993, NMR in biomedicine.

[63]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[64]  John Pauly,et al.  Interleaved narrow‐band PRESS sequence with adiabatic spatial‐spectral refocusing pulses for 1H MRSI at 7T , 2008, Magnetic resonance in medicine.

[65]  Vivek K Goyal,et al.  Fast Slice-selective Radio-frequency Excitation Pulses for Mitigating B 1 ؉ Inhomogeneity in the Human Brain at 7 Tesla , 2022 .

[66]  B D Ross,et al.  Absolute Quantitation of Water and Metabolites in the Human Brain. I. Compartments and Water , 1993 .

[67]  D. Hoult Sensitivity and Power Deposition in a High‐Field Imaging Experiment , 2000, Journal of magnetic resonance imaging : JMRI.

[68]  G B Matson,et al.  Spin echo 31P spectroscopic imaging in the human brain , 1990, Magnetic resonance in medicine.

[69]  Douglas C Noll,et al.  Small tip angle three‐dimensional tailored radiofrequency slab‐select pulse for reduced B1 inhomogeneity at 3 T , 2005, Magnetic resonance in medicine.

[70]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[71]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[72]  Albert Macovski,et al.  MR Spectroscopic imaging of collagen: Tendons and knee menisci , 1995, Magnetic resonance in medicine.

[73]  F Schick Simultaneous highly selective MR water and fat imaging using a simple new type of spectral‐spatial excitation , 1998, Magnetic resonance in medicine.

[74]  Axel Haase,et al.  Spectroscopic FLASH NMR imaging (SPLASH imaging) , 1987 .

[75]  A. Blamire,et al.  Clinical correlates of proton magnetic resonance spectroscopy findings after acute cerebral infarction. , 1995, Stroke.

[76]  T R Brown,et al.  Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. , 1996, Journal of neurosurgery.

[77]  J Star-Lack,et al.  Reduced spatial side lobes in chemical‐shift imaging , 1999, Magnetic resonance in medicine.

[78]  Gioacchino Tedeschi,et al.  High Speed 1H Spectroscopic Imaging in Human Brain by Echo Planar Spatial‐Spectral Encoding , 1995, Magnetic resonance in medicine.

[79]  A Macovski,et al.  Spectroscopic imaging with multidimensional pulses for excitation: SIMPLE , 1991, Magnetic resonance in medicine.

[80]  Jullie W Pan,et al.  Short echo spectroscopic imaging of the human brain at 7T using transceiver arrays , 2009, Magnetic resonance in medicine.

[81]  J. Frahm,et al.  High‐speed STEAM MRI of the human heart , 1991, Magnetic resonance in medicine.

[82]  Eva-Maria Ratai,et al.  Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners. , 2010, Journal of magnetic resonance.

[83]  A. Macovski Noise in MRI , 1996, Magnetic resonance in medicine.

[84]  R. D. de Graaf,et al.  Adiabatic water suppression using frequency selective excitation , 1998, Magnetic resonance in medicine.

[85]  Markus Vester,et al.  Degenerate mode band‐pass birdcage coil for accelerated parallel excitation , 2007, Magnetic resonance in medicine.

[86]  B J Soher,et al.  Acute stroke: evaluation with serial proton MR spectroscopic imaging. , 1994, Radiology.

[87]  R. Sepponen,et al.  A Method for Chemical Shift Imaging: Demonstration of Bone Marrow Involvement with Proton Chemical Shift Imaging , 1984, Journal of computer assisted tomography.

[88]  A Macovski,et al.  MRS imaging using anatomically based K‐space sampling and extrapolation , 1995, Magnetic resonance in medicine.

[89]  Hoult,et al.  Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. , 1985, Physical review. A, General physics.

[90]  Kawin Setsompop,et al.  Slice‐selective RF pulses for in vivo B  1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16‐element coil , 2008, Magnetic resonance in medicine.

[91]  R. Bartha,et al.  High‐field MRSI of the prostate using a transmit/receive endorectal coil and gradient modulated adiabatic localization , 2009, Journal of magnetic resonance imaging : JMRI.

[92]  P. Bottomley Spatial Localization in NMR Spectroscopy in Vivo , 1987, Annals of the New York Academy of Sciences.

[93]  H. Moser,et al.  Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy , 2002, Neurology.

[94]  E. Breitmaier,et al.  [Carbon 13 NMR spectroscopy]. , 1976, Pharmazie in unserer Zeit.

[95]  J. Kurhanewicz,et al.  Improved water and lipid suppression for 3D PRESS CSI using rf band selective inversion with gradient dephasing (basing) , 1997, Magnetic resonance in medicine.

[96]  P Kapeller,et al.  Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. , 2002, Brain : a journal of neurology.

[97]  Peter Andersen,et al.  9.4T human MRI: Preliminary results , 2006, Magnetic resonance in medicine.

[98]  K. Uğurbil,et al.  NMR chemical shift imaging in three dimensions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Saunders,et al.  Proton spectroscopy in vivo. , 1993, Magnetic resonance quarterly.

[100]  Priti Balchandani,et al.  Fat suppression for 1H MRSI at 7T using spectrally selective adiabatic inversion recovery , 2008, Magnetic resonance in medicine.

[101]  D B Twieg Multiple‐output chemical shift imaging (MOCSI): A practical technique for rapid spectroscopic imaging , 1989, Magnetic resonance in medicine.

[102]  S. Nelson Multivoxel magnetic resonance spectroscopy of brain tumors. , 2003, Molecular cancer therapeutics.

[103]  Chrit T. W. Moonen,et al.  Highly Effective Water Suppression for in vivo proton NMR Spectroscopy (DRYSTEAM) , 1990 .

[104]  M. Doyle,et al.  Chemical‐shift imaging: A hybrid approach , 1987, Magnetic resonance in medicine.

[105]  G B Matson,et al.  Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging , 1992, Neurology.

[106]  J. Opitz,et al.  Hexosaminidase A deficiency in adults. , 1986, American journal of medical genetics.

[107]  Dwight G. Nishimura,et al.  Rapid gridding reconstruction with a minimal oversampling ratio , 2005, IEEE Transactions on Medical Imaging.

[108]  Rolf Gruetter,et al.  Localized in vivo 13C NMR spectroscopy of the brain , 2003, NMR in biomedicine.

[109]  J. Pauly,et al.  Simultaneous spatial and spectral selective excitation , 1990, Magnetic resonance in medicine.

[110]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[111]  Bruno Alfano,et al.  1H MR Spectroscopy in Patients with Metastatic Brain Tumors: A Multicenter Study , 1995, Magnetic resonance in medicine.

[112]  P R Luyten,et al.  Experimental approaches to image localized human 31P NMR spectroscopy , 1989, Magnetic resonance in medicine.

[113]  Roger J Ordidge,et al.  Spin-echo MRS in humans at high field: LASER localisation using FOCI pulses. , 2005, Journal of magnetic resonance.

[114]  R G Shulman,et al.  Proton Magnetic Resonance Spectroscopy of Cerebral Lactate and Other Metabolites in Stroke Patients , 1992, Stroke.

[115]  D P Auer,et al.  On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain , 1995, NMR in biomedicine.

[116]  D Matthaei,et al.  1H NMR chemical shift selective (CHESS) imaging. , 1985, Physics in medicine and biology.

[117]  M. Garwood,et al.  Adiabatic pulses , 1997, NMR in biomedicine.

[118]  S J Nelson,et al.  Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. , 1993, Radiology.

[119]  J H Duyn,et al.  Multisection proton MR spectroscopic imaging of the brain. , 1993, Radiology.