Restoration and Zoom of Irregularly Sampled, Blurred, and Noisy Images by Accurate Total Variation Minimization with Local Constraints

We propose an algorithm to solve a problem in image restoration which considers several different aspects of it, namely irregular sampling, denoising, deconvolution, and zooming. Our algorithm is b...

[1]  A. Bermúdez,et al.  Duality methods for solving variational inequalities , 1981 .

[2]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  François Malgouyres Total Variation Based Oversampling of Noisy Images , 2001, Scale-Space.

[5]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[6]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[7]  K. Gröchenig,et al.  Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .

[8]  Tony F. Chan,et al.  Structure-Texture Decomposition by a TV-Gabor Model , 2005, VLSM.

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[11]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[12]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[13]  W. Ziemer Weakly differentiable functions , 1989 .

[14]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[15]  Hans G. Feichtinger,et al.  Iterative algorithms in irregular sampling: a first comparison of methods , 1991, [1991 Proceedings] Tenth Annual International Phoenix Conference on Computers and Communications.

[16]  Claude Gasquet,et al.  Analyse de Fourier et applications : filtrage, calcul numérique, ondelettes , 1990 .

[17]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[18]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[19]  Bernard Rougé,et al.  Measuring and Improving Image Resolution by Adaptation of the Reciprocal Cell , 2004, Journal of Mathematical Imaging and Vision.

[20]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[21]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[22]  K. Gröchenig RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .

[23]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[24]  Gregory Beylkin,et al.  On Applications of Unequally Spaced Fast Fourier Transforms , 1998 .

[25]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[26]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[27]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[28]  Pierre Faurre,et al.  Analyse numérique, notes d'optimisation , 1988 .

[29]  Andrés Almansa Sampling, interpolation and detection. Applications in satellite imaging. (Echantillonnage, interpolation et détection. Applications en imagerie satellitaire) , 2002 .

[30]  M. Novaga,et al.  The Total Variation Flow in RN , 2002 .

[31]  Bernard Rougé,et al.  TV Based Image Restoration with Local Constraints , 2003, J. Sci. Comput..

[32]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[33]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[34]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[35]  L. Evans Measure theory and fine properties of functions , 1992 .

[36]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[37]  Guy Gilboa,et al.  Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising , 2006, Journal of Mathematical Imaging and Vision.

[38]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[39]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[40]  Gian-Carlo Rota Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .

[41]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[42]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[43]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .