Restoration and Zoom of Irregularly Sampled, Blurred, and Noisy Images by Accurate Total Variation Minimization with Local Constraints
暂无分享,去创建一个
Bernard Rougé | Andrés Almansa | Vicent Caselles | Gloria Haro | V. Caselles | Andrés Almansa | B. Rougé | G. Haro
[1] A. Bermúdez,et al. Duality methods for solving variational inequalities , 1981 .
[2] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] François Malgouyres. Total Variation Based Oversampling of Noisy Images , 2001, Scale-Space.
[5] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[6] T. Chan,et al. On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .
[7] K. Gröchenig,et al. Numerical and Theoretical Aspects of Nonuniform Sampling of Band-Limited Images , 2001 .
[8] Tony F. Chan,et al. Structure-Texture Decomposition by a TV-Gabor Model , 2005, VLSM.
[9] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[10] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[11] P. G. Ciarlet,et al. Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .
[12] François Malgouyres,et al. Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..
[13] W. Ziemer. Weakly differentiable functions , 1989 .
[14] L. Vese. A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .
[15] Hans G. Feichtinger,et al. Iterative algorithms in irregular sampling: a first comparison of methods , 1991, [1991 Proceedings] Tenth Annual International Phoenix Conference on Computers and Communications.
[16] Claude Gasquet,et al. Analyse de Fourier et applications : filtrage, calcul numérique, ondelettes , 1990 .
[17] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[18] Akram Aldroubi,et al. Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..
[19] Bernard Rougé,et al. Measuring and Improving Image Resolution by Adaptation of the Reciprocal Cell , 2004, Journal of Mathematical Imaging and Vision.
[20] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[21] Raymond H. Chan,et al. Continuation method for total variation denoising problems , 1995, Optics & Photonics.
[22] K. Gröchenig. RECONSTRUCTION ALGORITHMS IN IRREGULAR SAMPLING , 1992 .
[23] Curtis R. Vogel,et al. Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..
[24] Gregory Beylkin,et al. On Applications of Unequally Spaced Fast Fourier Transforms , 1998 .
[25] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[26] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[27] V. Caselles,et al. Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .
[28] Pierre Faurre,et al. Analyse numérique, notes d'optimisation , 1988 .
[29] Andrés Almansa. Sampling, interpolation and detection. Applications in satellite imaging. (Echantillonnage, interpolation et détection. Applications en imagerie satellitaire) , 2002 .
[30] M. Novaga,et al. The Total Variation Flow in RN , 2002 .
[31] Bernard Rougé,et al. TV Based Image Restoration with Local Constraints , 2003, J. Sci. Comput..
[32] J. Morel,et al. A multiscale algorithm for image segmentation by variational method , 1994 .
[33] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[34] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[35] L. Evans. Measure theory and fine properties of functions , 1992 .
[36] Michel Barlaud,et al. Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..
[37] Guy Gilboa,et al. Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising , 2006, Journal of Mathematical Imaging and Vision.
[38] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[39] V. Caselles,et al. Minimizing total variation flow , 2000, Differential and Integral Equations.
[40] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[41] Antonin Chambolle,et al. Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.
[42] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[43] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .