Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

[1]  Rajender S. Varma,et al.  Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. , 2014, Accounts of chemical research.

[2]  Yongbo Song,et al.  A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag(x)Au(25-x) nanoclusters: the 13th silver atom matters. , 2014, Angewandte Chemie.

[3]  Chun-Lan Zheng,et al.  Label-free detection of sulfide ions based on fluorescence quenching of unmodified core–shell Au@Ag nanoclusters , 2014 .

[4]  D. Leong,et al.  Identification of a highly luminescent Au22(SG)18 nanocluster. , 2014, Journal of the American Chemical Society.

[5]  D. Leong,et al.  Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. , 2014, Nanoscale.

[6]  Jie Zheng,et al.  PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. , 2013, Angewandte Chemie.

[7]  Ya-qi Jiang,et al.  Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. , 2013, Analytical chemistry.

[8]  Li Shang,et al.  Intracellular thermometry by using fluorescent gold nanoclusters. , 2013, Angewandte Chemie.

[9]  Douglas R. Kauffman,et al.  A Quantum Alloy: The Ligand-Protected Au25–xAgx(SR)18 Cluster , 2013 .

[10]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[11]  N. Yan,et al.  Scalable and Precise Synthesis of Thiolated Au10–12, Au15, Au18, and Au25 Nanoclusters via pH Controlled CO Reduction , 2013 .

[12]  Xiurong Yang,et al.  Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. , 2013, Chemical communications.

[13]  D. Leong,et al.  Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. , 2013, Analytical chemistry.

[14]  V. Trouillet,et al.  High photostability and enhanced fluorescence of gold nanoclusters by silver doping. , 2012, Nanoscale.

[15]  Jianping Xie,et al.  From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. , 2012, Journal of the American Chemical Society.

[16]  R. Gil,et al.  Monoplatinum doping of gold nanoclusters and catalytic application. , 2012, Journal of the American Chemical Society.

[17]  Y. Negishi,et al.  Effect of Copper Doping on Electronic Structure, Geometric Structure, and Stability of Thiolate-Protected Au25 Nanoclusters. , 2012, The journal of physical chemistry letters.

[18]  Chen Zhou,et al.  Different sized luminescent gold nanoparticles. , 2012, Nanoscale.

[19]  C. Yang,et al.  Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. , 2012, Nanoscale.

[20]  W. Cai,et al.  Au25(SG)18 as a fluorescent iodide sensor. , 2012, Nanoscale.

[21]  A. Dass,et al.  AuAg alloy nanomolecules with 38 metal atoms. , 2012, Nanoscale.

[22]  G. Nienhaus,et al.  Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. , 2012, Nanoscale.

[23]  Yu-Chie Chen,et al.  Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. , 2012, Analytical chemistry.

[24]  Y. Yue,et al.  Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. , 2012, Nanoscale.

[25]  Wei-Yu Chen,et al.  Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. , 2011, Analytical chemistry.

[26]  G. Nienhaus,et al.  One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. , 2011, Small.

[27]  Jun‐Jie Zhu,et al.  Rapid Sonochemical Synthesis of Highly Luminescent Non‐Toxic AuNCs and Au@AgNCs and Cu(II) Sensing. , 2011 .

[28]  R. Jin,et al.  Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. , 2011, Journal of the American Chemical Society.

[29]  G. Nienhaus,et al.  Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. , 2011, Nanoscale.

[30]  R. Jin,et al.  Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol , 2011 .

[31]  Wei Chen,et al.  One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. , 2011, Journal of the American Chemical Society.

[32]  Xiang-qun Guo,et al.  Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II) , 2011, Nanotechnology.

[33]  R. Jin Quantum‐Sized, Thiolate‐Protected Gold Nanoclusters , 2010 .

[34]  T. Bigioni,et al.  Glutathione-stabilized magic-number silver cluster compounds. , 2010, Journal of the American Chemical Society.

[35]  A. Banerjee,et al.  Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing , 2010 .

[36]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[37]  Shu‐Yi Lin,et al.  Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging. , 2010, Chemical communications.

[38]  Moon J. Kim,et al.  Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au (I) Thiolates. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[39]  Tsunehiro Tanaka,et al.  Stability of silver cluster in zeolite A and Y catalysts , 2009 .

[40]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[41]  R. Murray,et al.  Mass spectrometry of small bimetal monolayer-protected clusters. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  Zusing Yang,et al.  Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots , 2009 .

[43]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[44]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[45]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[46]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[47]  Y. Negishi,et al.  Kinetic stabilization of growing gold clusters by passivation with thiolates. , 2006, The journal of physical chemistry. B.

[48]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[49]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[50]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[51]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[52]  J. Weaver,et al.  Surface characterization study of the thermal decomposition of Ag2O , 1994 .

[53]  J. Weaver,et al.  SURFACE CHARACTERIZATION STUDY OF THE THERMAL DECOMPOSITION OF AGO , 1994 .

[54]  C. Wagner Handbook of x-ray photoelectron spectroscopy : a reference book of standard data for use in x-ray photoelectron spectroscopy , 1979 .