Smallest nonparametric tolerance regions
暂无分享,去创建一个
A. Di Bucchianico | J. Einmahl | N. Mushkudiani | J.H.J. Einmahl | N. A. Mushkudiani | A. D. Bucchianico
[1] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[2] R. M. Dudley,et al. Empirical and Poisson processes on classes of sets or functions too large for central limit theorems , 1982 .
[3] Donald Fraser,et al. Nonparametric Tolerance Regions , 1953 .
[4] Jan Beirlant,et al. Asymptotic confidence intervals for the length of the shortt under random censoring , 1995 .
[5] John W. Tukey,et al. Nonparametric Estimation, III. Statistically Equivalent Blocks and Multivariate Tolerance Regions--The Discontinuous Case , 1948 .
[6] D. Nolan. The excess-mass ellipsoid , 1991 .
[7] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[8] E. Bolthausen. Weak convergence of an empirical process indexed by the closed convex subsets ofI2 , 1978 .
[9] David Eppstein,et al. Finding minimum areak-gons , 1992, Discret. Comput. Geom..
[10] J. K. Ord,et al. Statistical Tolerance Regions: Classical and Bayesian , 1971 .
[11] Shoutir Kishore Chatterjee,et al. Asymptotically Minimal Multivariate Tolerance Sets , 1980 .
[12] Na Nino Mushkudiani,et al. Small nonparametric tolerance regions for directional data , 2000 .
[13] R. Grübel. The Length of the Shorth , 1988 .
[14] D. Titterington,et al. Minimum Covering Ellipses , 1980 .
[15] W. Polonik. Minimum volume sets and generalized quantile processes , 1997 .
[16] P. L. Davies,et al. The asymptotics of Rousseeuw's minimum volume ellipsoid estimator , 1992 .
[17] Abraham Wald,et al. An Extension of Wilks' Method for Setting Tolerance Limits , 1943 .
[18] P. Rousseeuw,et al. A robust scale estimator based on the shortest half , 1988 .
[19] Peter J. Rousseeuw,et al. Robust Distances: Simulations and Cutoff Values , 1991 .
[20] José Agulló Candela. Exact Iterative Computation of the Multivariate Minimum Volume Ellipsoid Estimator with a Branch and Bound Algorithm , 1996 .
[21] Regina Y. Liu,et al. Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .
[22] J. Aitchison,et al. Statistical Prediction Analysis , 1975 .
[23] Aad van der Vaart. Weak Convergence of Smoothed Empirical Processes , 1994 .
[24] S. S. Wilks. Determination of Sample Sizes for Setting Tolerance Limits , 1941 .
[25] David Eppstein,et al. New algorithms for minimum area k-gons , 1992, SODA '92.
[26] A. Azzalini. A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .
[27] J. Tukey. Non-Parametric Estimation II. Statistically Equivalent Blocks and Tolerance Regions--The Continuous Case , 1947 .
[28] M. Jílek,et al. A bibliography of statistical tolerance regions, II , 1981 .
[29] G. C. Shephard,et al. Metrics for sets of convex bodies , 1965 .
[30] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[31] H. Ackermann. Multivariate Non‐parametric Tolerance Regions: A New Construction Technique , 1983 .
[32] Aad van der Vaart,et al. New Donsker classes , 1996 .
[33] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[34] D. Mason,et al. Generalized quantile processes , 1992 .
[35] K. Alexander,et al. Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .
[36] David Ruppert,et al. Prediction and tolerance intervals with transformation and/or weighting , 1991 .
[37] Na Nino Mushkudiani. Statistical applications of generalized quantiles : nonparametric tolerance regions and P-P plots , 2000 .