Smallest nonparametric tolerance regions

We present a new, natural way to construct nonparametric multivariate tolerance regions. Unlike the classical nonparametric tolerance intervals, where the endpoints are determined by beforehand chosen order statistics, we take the shortest interval, that contains a certain number of observations. We extend this idea to higher dimensions by replacing the class of intervals by a general class of indexing sets, which specializes to the classes of ellipsoids, hyperrectangles or convex sets. The asymptotic behavior of our tolerance regions is derived using empirical process theory, in particular the concept of generalized quantiles. Finite sample properties of our tolerance regions are investigated through a simulation study. Real data examples are also presented.

[1]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[2]  R. M. Dudley,et al.  Empirical and Poisson processes on classes of sets or functions too large for central limit theorems , 1982 .

[3]  Donald Fraser,et al.  Nonparametric Tolerance Regions , 1953 .

[4]  Jan Beirlant,et al.  Asymptotic confidence intervals for the length of the shortt under random censoring , 1995 .

[5]  John W. Tukey,et al.  Nonparametric Estimation, III. Statistically Equivalent Blocks and Multivariate Tolerance Regions--The Discontinuous Case , 1948 .

[6]  D. Nolan The excess-mass ellipsoid , 1991 .

[7]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[8]  E. Bolthausen Weak convergence of an empirical process indexed by the closed convex subsets ofI2 , 1978 .

[9]  David Eppstein,et al.  Finding minimum areak-gons , 1992, Discret. Comput. Geom..

[10]  J. K. Ord,et al.  Statistical Tolerance Regions: Classical and Bayesian , 1971 .

[11]  Shoutir Kishore Chatterjee,et al.  Asymptotically Minimal Multivariate Tolerance Sets , 1980 .

[12]  Na Nino Mushkudiani,et al.  Small nonparametric tolerance regions for directional data , 2000 .

[13]  R. Grübel The Length of the Shorth , 1988 .

[14]  D. Titterington,et al.  Minimum Covering Ellipses , 1980 .

[15]  W. Polonik Minimum volume sets and generalized quantile processes , 1997 .

[16]  P. L. Davies,et al.  The asymptotics of Rousseeuw's minimum volume ellipsoid estimator , 1992 .

[17]  Abraham Wald,et al.  An Extension of Wilks' Method for Setting Tolerance Limits , 1943 .

[18]  P. Rousseeuw,et al.  A robust scale estimator based on the shortest half , 1988 .

[19]  Peter J. Rousseeuw,et al.  Robust Distances: Simulations and Cutoff Values , 1991 .

[20]  José Agulló Candela Exact Iterative Computation of the Multivariate Minimum Volume Ellipsoid Estimator with a Branch and Bound Algorithm , 1996 .

[21]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[22]  J. Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[23]  Aad van der Vaart Weak Convergence of Smoothed Empirical Processes , 1994 .

[24]  S. S. Wilks Determination of Sample Sizes for Setting Tolerance Limits , 1941 .

[25]  David Eppstein,et al.  New algorithms for minimum area k-gons , 1992, SODA '92.

[26]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[27]  J. Tukey Non-Parametric Estimation II. Statistically Equivalent Blocks and Tolerance Regions--The Continuous Case , 1947 .

[28]  M. Jílek,et al.  A bibliography of statistical tolerance regions, II , 1981 .

[29]  G. C. Shephard,et al.  Metrics for sets of convex bodies , 1965 .

[30]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[31]  H. Ackermann Multivariate Non‐parametric Tolerance Regions: A New Construction Technique , 1983 .

[32]  Aad van der Vaart,et al.  New Donsker classes , 1996 .

[33]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[34]  D. Mason,et al.  Generalized quantile processes , 1992 .

[35]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[36]  David Ruppert,et al.  Prediction and tolerance intervals with transformation and/or weighting , 1991 .

[37]  Na Nino Mushkudiani Statistical applications of generalized quantiles : nonparametric tolerance regions and P-P plots , 2000 .