Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers

Fiber lasers mode locked with large normal group-velocity dispersion have recently achieved femtosecond pulse durations with energies and peak powers at least an order of magnitude greater than those of prior approaches. Several new mode-locking regimes have been demonstrated, including self-similar pulse propagation in passive and active fibers, dissipative solitons, and a pulse evolution that avoids wave breaking at high peak power but has not been reproduced by theoretical treatment. Here, we illustrate the main features of these new pulse-shaping mechanisms through the results of numerical simulations that agree with experimental results. We describe the features that distinguish each new mode-locking state and explain how the interplay of basic processes in the fiber produces the balance of amplitude and phase evolutions needed for stable high-energy pulses. Dissipative processes such as spectral filtering play a major role in normal-dispersion mode locking. Understanding the different mechanisms allows us to compare and contrast them, as well as to categorize them to some extent.

[1]  F. Wise,et al.  Self-similar evolution of parabolic pulses in a laser. , 2004, Physical review letters.

[2]  M J Messerly,et al.  Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs. , 2007, Optics letters.

[3]  F. W. Wise,et al.  Giant-chirp oscillators for short-pulse fiber amplifiers , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[4]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[5]  Frank W. Wise,et al.  Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser , 2003 .

[6]  F. Wise,et al.  Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. , 2009, Optics letters.

[7]  J. Limpert,et al.  Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. , 2005, Optics Express.

[8]  H. Haus,et al.  77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. , 1993, Optics letters.

[9]  F. W. Wise,et al.  Area theorem and energy quantization for dissipative optical solitons , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[10]  A. Ruehl,et al.  All-fiber similariton laser at 1 mum without dispersion compensation. , 2007, Optics express.

[11]  F. Ömer Ilday,et al.  Soliton–similariton fibre laser , 2010 .

[12]  Thomas Schreiber,et al.  High-energy femtosecond photonic crystal fiber laser. , 2010, Optics letters.

[13]  N. Godbout,et al.  Dynamics of parabolic pulses in an ultrafast fiber laser. , 2006, Optics letters.

[14]  F. Wise,et al.  Route to the minimum pulse duration in normal-dispersion fiber lasers. , 2008, Optics letters.

[15]  D. Tang,et al.  Gain-guided soliton in a positive group-dispersion fiber laser. , 2006, Optics letters.

[16]  Khanh Kieu,et al.  Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. , 2010, Optics letters.

[17]  Dietmar Kracht,et al.  All-fiber ytterbium femtosecond laser without dispersion compensation. , 2008, Optics express.

[18]  Frank W. Wise,et al.  Dissipative solitons in normal-dispersion fiber lasers , 2008 .

[19]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser. , 2006, Optics express.

[20]  Mietek Lisak,et al.  Wave breaking in nonlinear-optical fibers , 1992 .

[21]  Andy Chong,et al.  Environmentally stable all-normal-dispersion femtosecond fiber laser. , 2008, Optics letters.

[22]  F. Wise,et al.  Spectral filtering for mode locking in the normal dispersive regime. , 2008, Optics letters.

[23]  F. Wise,et al.  All-fiber normal-dispersion femtosecond laser. , 2008, Optics express.

[24]  J. Fujimoto,et al.  Structures for additive pulse mode locking , 1991 .

[25]  Jens Limpert,et al.  On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. , 2007, Optics express.

[26]  F. Wise,et al.  Femtosecond fiber lasers with pulse energies above 10 nJ. , 2005, Optics letters.

[27]  Jens Limpert,et al.  Self-starting passively mode-locked chirped-pulse fiber laser. , 2007, Optics express.

[28]  M. Fermann,et al.  42-fs pulse generation from a mode-locked fiber laser started with a moving mirror. , 1993, Optics letters.

[29]  F. Ilday,et al.  All-fiber all-normal dispersion laser with a fiber-based Lyot filter. , 2010, Optics letters.

[30]  Jens Limpert,et al.  Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers. , 2009, Optics letters.

[31]  Frank W. Wise,et al.  Properties of normal-dispersion femtosecond fiber lasers , 2008 .

[32]  J. Limpert,et al.  High-energy femtosecond Yb-doped dispersion compensation free fiber laser. , 2007, Optics express.

[33]  J. Limpert,et al.  Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser , 2006, SPIE LASE.

[34]  S. Wabnitz,et al.  Strong spectral filtering for a mode-locked similariton fiber laser. , 2010, Optics letters.

[35]  Frank W. Wise,et al.  High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion , 2008 .

[36]  Andy Chong,et al.  Self-similar pulse evolution in an all-normal-dispersion laser. , 2010, Physical review. A, Atomic, molecular, and optical physics.

[37]  O. Ilday,et al.  All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Andy Chong,et al.  All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. , 2007, Optics letters.

[39]  Nail Akhmediev,et al.  Roadmap to ultra-short record high-energy pulses out of laser oscillators , 2008 .

[40]  J. Harvey,et al.  Experimental realisation of a mode-locked parabolic Raman fiber oscillator , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[41]  Hermann A. Haus,et al.  Stretched-Pulse Additive Pulse Mode-Locking in Fiber , 1994 .

[42]  Nail Akhmediev,et al.  Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion , 1997 .

[43]  Boris A. Malomed,et al.  Soliton Management in Periodic Systems , 2006 .

[44]  Frank W. Wise,et al.  Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers , 2008 .

[45]  J. W. Lou,et al.  Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser. , 2007, Optics express.

[46]  J. Limpert,et al.  Sub-80 fs dissipative soliton large-mode-area fiber laser. , 2010, Optics letters.

[47]  Hermann A. Haus,et al.  Additive-pulse modelocking in fiber lasers , 1994 .