Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films.

Nanocrystalline WO(3) thin films were produced by sputter-deposition by varying the ratio of argon to oxygen in the reactive gas mixture during deposition. The surface chemistry, physical characteristics, and optical properties of nanocrystalline WO(3) films were evaluated using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray reflectivity (XRR), and spectrophotometric measurements. The effect of ultramicrostructure was significant on the optical properties of WO(3) films. The XPS analyses indicate the formation of stoichiometric WO(3) with tungsten existing in fully oxidized valence state (W(6+)). However, WO(3) films grown at high oxygen concentration (>60%) in the sputtering gas mixture were over stoichiometric with excess oxygen. XRR simulations based on isotropic WO(3) film-SiO(2) interface-Si substrate modeling indicate that the density of WO(3) films is sensitive to the oxygen content in the sputtering gas. The spectral transmission of the films increased with increasing oxygen. The band gap of these films increases from 2.78 to 3.25 eV with increasing oxygen. A direct correlation between the film density and band gap in nanocrystalline WO(3) films is established on the basis of the observed results.

[1]  K. Bharathi,et al.  Correlation between microstructure, electrical and optical properties of nanocrystalline NiFe1.925Dy0.075O4 thin films , 2012 .

[2]  Nikos Konofaos,et al.  Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices , 2011 .

[3]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[4]  K. Giannakopoulos,et al.  Porous hot-wire deposited WO3 films with high optical transmission , 2011 .

[5]  C. Ramana,et al.  Crystal structure, phase, and electrical conductivity of nanocrystalline W₀.₉₅Ti(₀.₀₅)O₃ thin films. , 2011, ACS applied materials & interfaces.

[6]  Y. Tachibana,et al.  Dye-sensitized solar cells based on WO3. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  K. Bharathi,et al.  Effect of structure and size on the electrical properties of nanocrystalline WO3 films. , 2010, ACS applied materials & interfaces.

[8]  C. Ramana,et al.  Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films , 2010 .

[9]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[10]  Amit Kumar Chawla,et al.  Influence of nitrogen doping on the sputter-deposited WO3 films , 2009 .

[11]  Yung‐Sen Lin,et al.  Electrochromic performance of PECVD-synthesized WOxCy thin films on flexible PET/ITO substrates for flexible electrochromic devices , 2009 .

[12]  D. Raftery,et al.  Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis , 2009 .

[13]  Krithika Kalyanasundaram,et al.  A selective nanosensing probe for nitric oxide , 2008 .

[14]  S. K. Deb,et al.  An UV photochromic memory effect in proton-based WO3 electrochromic devices , 2008 .

[15]  Pelagia-Irene Gouma,et al.  Ferroelectric WO3 Nanoparticles for Acetone Selective Detection , 2008 .

[16]  G. Beydaghyan,et al.  Electrochromic and morphological investigation of dry-lithiated nanostructured tungsten trioxide thin films , 2008 .

[17]  C. Schulz,et al.  Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition , 2007 .

[18]  Jacob C. Jonsson,et al.  Optical absorption in lithiated tungsten oxide thin films: Experiment and theory , 2007 .

[19]  D. Dumcenco,et al.  Optical characterization of niobium-doped rhenium disulphide single crystals , 2007 .

[20]  R. Rocheleau,et al.  Progress in sputtered tungsten trioxide for photoelectrode applications , 2007 .

[21]  D. Mergel,et al.  Structural investigation of thin TiO2 films prepared by evaporation and post‐heating , 2007 .

[22]  Junsheng Yu,et al.  Gas sensing characteristics of WO3 vacuum deposited thin films , 2007 .

[23]  A. Shpak,et al.  XPS studies of active elements surface of gas sensors based on WO3−x nanoparticles , 2007 .

[24]  Aryasomayajula Subrahmanyam,et al.  Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films , 2007 .

[25]  N. Xu,et al.  Raman study of thermochromic phase transition in tungsten trioxide nanowires , 2007 .

[26]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[27]  R C Ewing,et al.  Structural stability and phase transitions in WO3 thin films. , 2006, The journal of physical chemistry. B.

[28]  R. Rocheleau,et al.  Nitrogen Doping of Reactively Sputtered Tungsten Oxide Films , 2005 .

[29]  Z. Qiao,et al.  Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density. , 2005, Applied optics.

[30]  C. Bittencourt,et al.  Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors , 2005 .

[31]  A. Chadwick,et al.  The oxygen vacancy in crystal phases of WO(3). , 2005, The journal of physical chemistry. B.

[32]  K. Schierbaum,et al.  The structure and electrical conductivity of vacuum-annealed WO3 thin films , 2004 .

[33]  G. Leftheriotis,et al.  Structural and electrochemical properties of opaque sol–gel deposited WO3 layers , 2003 .

[34]  L. Gengembre,et al.  TeO2-WO3 glasses: Infrared, XPS and XANES structural characterizations , 2002 .

[35]  Thomas F. Jaramillo,et al.  Controlled Electrodeposition of Nanoparticulate Tungsten Oxide , 2002 .

[36]  G. M. Rao,et al.  Structure-composition-property dependence in reactive magnetron sputtered ZnO thin films , 2002 .

[37]  D. Mergel Modeling thin TiO2 films of various densities as an effective optical medium , 2001 .

[38]  Duk-Dong Lee,et al.  Effect of substrate on NO2-sensing properties of WO3 thin film gas sensors , 2000 .

[39]  Claude Lucat,et al.  Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines , 2000 .

[40]  L. Lozzi,et al.  X-ray photoemission spectroscopy and scanning tunneling spectroscopy study on the thermal stability of WO3 thin films , 2000 .

[41]  D. Gonbeau,et al.  Systematic XPS studies of metal oxides, hydroxides and peroxides , 2000 .

[42]  Duk-Dong Lee,et al.  Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor , 1999 .

[43]  P. Woodward,et al.  The High-Temperature Phases of WO3 , 1999 .

[44]  Claudio Vinegoni,et al.  Low-Temperature Polymorphism in Tungsten Trioxide Powders and Its Dependence on Mechanical Treatments , 1999 .

[45]  Teunis Johannes Vink,et al.  LITHIUM TRAPPING AT EXCESS OXYGEN IN SPUTTER-DEPOSITED A-WO3 FILMS , 1999 .

[46]  W. Schubert,et al.  Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds , 1999 .

[47]  R. B. Tahar,et al.  Tin doped indium oxide thin films: Electrical properties , 1998 .

[48]  C. Catlow,et al.  Transition Metal Oxide Chemistry: Electronic Structure Study of WO3, ReO3, and NaWO3 , 1997 .

[49]  T. Tseng,et al.  ON THE OFF STOICHIOMETRY OF CERIUM OXIDE THIN FILMS DEPOSITED BY RF SPUTTERING , 1996 .

[50]  F. Hemming,et al.  The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC + O2 or W + O2 as characterized by XPS , 1995 .

[51]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[52]  S. Hashimoto,et al.  Prolonged lifetime of electrochromism of amorphous WO3–TiO2 thin films , 1992 .

[53]  R. Lappalainen,et al.  Stoichiometry and impurities in sputtered alumina films on copper , 1991 .

[54]  S. Hashimoto,et al.  Lifetime of Electrochromism of Amorphous WO 3 ‐ TiO2 Thin Films , 1991 .

[55]  M. Nygren,et al.  Electrical conductivity and high resolution electron microscopy studies of WO3−x crystals with 0 ≤ x ≤ 0.28 , 1983 .

[56]  F. P. Koffyberg,et al.  Interband Transitions of Semiconducting Oxides Determined from Photoelectrolysis Spectra. , 1979 .

[57]  E. Salje,et al.  Physical properties and phase transitions in WO3 , 1975 .

[58]  M. Sienko,et al.  EFFECT OF OXYGEN-DEFICIENCY ON ELECTRICAL TRANSPORT PROPERTIES OF TUNGSTEN TRIOXIDE CRYSTALS. , 1970 .