DNAmod: the DNA modification database

AbstractCovalent DNA modifications, such as 5-methylcytosine (5mC), are increasingly the focus of numerous research programs. In eukaryotes, both 5mC and 5-hydroxymethylcytosine (5hmC) are now recognized as stable epigenetic marks, with diverse functions. Bacteria, archaea, and viruses contain various other modified DNA nucleobases. Numerous databases describe RNA and histone modifications, but no database specifically catalogues DNA modifications, despite their broad importance in epigenetic regulation. To address this need, we have developed DNAmod: the DNA modification database. DNAmod is an open-source database (https://dnamod.hoffmanlab.org) that catalogues DNA modifications and provides a single source to learn about their properties. DNAmod provides a web interface to easily browse and search through these modifications. The database annotates the chemical properties and structures of all curated modified DNA bases, and a much larger list of candidate chemical entities. DNAmod includes manual annotations of available sequencing methods, descriptions of their occurrence in nature, and provides existing and suggested nomenclature. DNAmod enables researchers to rapidly review previous work, select mapping techniques, and track recent developments concerning modified bases of interest.

[1]  B. Strahl,et al.  Interpreting the language of histone and DNA modifications. , 2014, Biochimica et biophysica acta.

[2]  P. Møller,et al.  Recommendations for standardized description of and nomenclature concerning oxidatively damaged nucleobases in DNA. , 2010, Chemical research in toxicology.

[3]  Chuan He,et al.  Nucleic Acid Modifications in Regulation of Gene Expression. , 2016, Cell chemical biology.

[4]  Aleksandr B. Sahakyan,et al.  Selective Chemical Labeling of Natural T Modifications in DNA , 2015, Journal of the American Chemical Society.

[5]  H. Grosjean Nucleic Acids Are Not Boring Long Polymers of Only Four Types of Nucleotides: A Guided Tour , 2013 .

[6]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[7]  Egon L. Willighagen,et al.  PubChemRDF: towards the semantic annotation of PubChem compound and substance databases , 2015, Journal of Cheminformatics.

[8]  E. Raleigh,et al.  Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. , 2016, Chemical reviews.

[9]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[10]  Jef Rozenski,et al.  The RNA modification database, RNAMDB: 2011 update , 2010, Nucleic Acids Res..

[11]  S. Turner,et al.  Going beyond five bases in DNA sequencing. , 2012, Current opinion in structural biology.

[12]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[13]  Nongluk Plongthongkum,et al.  Advances in the profiling of DNA modifications: cytosine methylation and beyond , 2014, Nature Reviews Genetics.

[14]  N. Khromov-Borisov Naming the mutagenic nucleic acid base analogs: the Galatea syndrome. , 1997, Mutation research.

[15]  P. Jin,et al.  Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming , 2013, Cell.

[16]  P. Borst,et al.  Hypermodified bases in DNA , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  Stephen R. Heller,et al.  InChI, the IUPAC International Chemical Identifier , 2015, Journal of Cheminformatics.

[18]  Shun Liu,et al.  RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data , 2017, Nucleic Acids Res..

[19]  S. Balasubramanian,et al.  Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. , 2014, Nature chemistry.

[20]  Janusz M. Bujnicki,et al.  MODOMICS: a database of RNA modification pathways. 2017 update , 2017, Nucleic Acids Res..

[21]  Christoph Steinbeck,et al.  libChEBI: an API for accessing the ChEBI database , 2016, Journal of Cheminformatics.

[22]  Ling Chen,et al.  A Quality Assurance Methodology for ChEBI Ontology Focusing on Uncommonly Modeled Concepts , 2018, ICBO.

[23]  S. Balasubramanian,et al.  5-Formylcytosine can be a stable DNA modification in mammals. , 2015, Nature chemical biology.

[24]  M. Esteller,et al.  An Adenine Code for DNA: A Second Life for N6-Methyladenine , 2015, Cell.

[25]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[26]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[27]  Marcin Feder,et al.  MODOMICS: a database of RNA modification pathways , 2005, Nucleic Acids Res..

[28]  Jie Lv,et al.  HHMD: the human histone modification database , 2009, Nucleic Acids Res..

[29]  Christoph Steinbeck,et al.  ChEBI in 2016: Improved services and an expanding collection of metabolites , 2015, Nucleic Acids Res..

[30]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[31]  Hao Wu,et al.  Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions , 2014, Cell.

[32]  T. Bailey,et al.  Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet , 2016, bioRxiv.

[33]  Gordon R. McInroy,et al.  In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine , 2016, Genome Biology.

[34]  Núria Queralt-Rosinach,et al.  The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery , 2014, J. Biomed. Semant..

[35]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[36]  Tianyin Zhou,et al.  Evolving insights on how cytosine methylation affects protein–DNA binding , 2014, Briefings in functional genomics.

[37]  Richard J. Roberts,et al.  REBASE—a database for DNA restriction and modification: enzymes, genes and genomes , 2009, Nucleic Acids Res..

[38]  C. Steinbeck,et al.  The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web , 2011, PloS one.

[39]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[40]  M. Weiser,et al.  An empirical comparison of pie vs. linear menus , 1988, CHI '88.

[41]  Ivan Herman,et al.  RDFa 1.1 Primer — Third Edition, W3C Note , 2015 .

[42]  Kristian Rother,et al.  REPAIRtoire—a database of DNA repair pathways , 2010, Nucleic Acids Res..

[43]  S. Balasubramanian,et al.  Chemical Methods for Decoding Cytosine Modifications in DNA , 2014, Chemical reviews.

[44]  H. Bayley,et al.  Identification of epigenetic DNA modifications with a protein nanopore. , 2010, Chemical communications.

[45]  Christoph Steinbeck,et al.  The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 , 2012, Nucleic Acids Res..

[46]  Christoph Grunau,et al.  An improved version of the DNA methylation database (MethDB) , 2003, Nucleic Acids Res..

[47]  M. Vermeulen,et al.  Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. , 2014, Nature chemical biology.

[48]  Chris Morley,et al.  Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit , 2008, Chemistry Central journal.