Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition.

We propose and analyze a new approach based on parity-time (PT) symmetric microcavities with balanced gain and loss to enhance the performance of cavity-assisted metrology. We identify the conditions under which PT-symmetric microcavities allow us to improve sensitivity beyond what is achievable in loss-only systems. We discuss the application of PT-symmetric microcavities to the detection of mechanical motion, and show that the sensitivity is significantly enhanced near the transition point from unbroken- to broken-PT regimes. Our results open a new direction for PT-symmetric physical systems and it may find use in ultrahigh precision metrology and sensing.

[1]  Yu-xi Liu,et al.  Photon-induced tunneling in optomechanical systems , 2012, 1212.4221.

[2]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[3]  Jonathan Stein,et al.  Digital Signal Processing: A Computer Science Perspective , 2000 .

[4]  Zach DeVito,et al.  Opt , 2017 .

[5]  Jesús Gómez-Gardeñes,et al.  Quantum Navigation and Ranking in Complex Networks , 2012, Scientific Reports.

[6]  T. Kippenberg,et al.  Near-field cavity optomechanics with nanomechanical oscillators , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[7]  Non-Hermitian degeneracy of two unbound states , 2006, quant-ph/0606239.

[8]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[9]  K. Qu,et al.  Spontaneous generation of photons in transmission of quantum fields inPT-symmetric optical systems , 2011, 1109.3379.

[10]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[11]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[12]  Nicolas Gisin,et al.  Heralded single-phonon preparation, storage, and readout in cavity optomechanics. , 2013, Physical review letters.

[13]  Dorje C Brody,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[14]  Paul Marks Quantum positioning system steps in when GPS fails , 2014 .

[15]  Mordechai Segev,et al.  Nonlinearly induced PT transition in photonic systems. , 2013, Physical review letters.

[16]  Henri Benisty,et al.  Implementation of PT symmetric devices using plasmonics: principle and applications. , 2011, Optics express.

[17]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[18]  H M Wiseman,et al.  Entanglement-enhanced measurement of a completely unknown phase , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[19]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[20]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[21]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[22]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[23]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[24]  C. Bender,et al.  Observation of PT phase transition in a simple mechanical system , 2012, 1206.4972.

[25]  Lan Yang,et al.  Ultrasensitive detection of mode splitting in active optical microcavities , 2010, 1007.0385.

[26]  T. Kippenberg,et al.  Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. , 2009, Physical review letters.

[27]  W. D. Heiss,et al.  Fano-Feshbach resonances in two-channel scattering around exceptional points , 2014, 1403.3187.

[28]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[29]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[30]  R. J. Schoelkopf,et al.  Dispersive measurements of superconducting qubit coherence with a fast latching readout , 2006 .

[31]  J. Main,et al.  Fano resonances in scattering: an alternative perspective , 2015, 1503.08707.

[32]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[33]  N. Zhao,et al.  Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. , 2010, Nature nanotechnology.

[34]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[35]  H. Harney,et al.  PT symmetry and spontaneous symmetry breaking in a microwave billiard. , 2011, Physical review letters.

[36]  A. Doherty,et al.  Detuned mechanical parametric amplification as a quantum non-demolition measurement , 2014, 1401.6215.

[37]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[38]  D. Christodoulides,et al.  Observation of asymmetric transport in structures with active nonlinearities. , 2013, Physical review letters.

[39]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[40]  Franco Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[41]  C. K. Law,et al.  Spectrum of single-photon emission and scattering in cavity optomechanics , 2012, 1201.1696.

[42]  Jiangfeng Du,et al.  Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond , 2013, Nature Physics.

[43]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[44]  Chao Hang,et al.  PT symmetry with a system of three-level atoms. , 2012, Physical review letters.

[45]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[46]  Nick Lazarides,et al.  Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. , 2012, Physical review letters.

[47]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[48]  Franco Nori,et al.  What is and what is not electromagnetically induced transparency in whispering-gallery microcavities , 2014, Nature Communications.

[49]  Xiang Zhang,et al.  One-way invisible cloak using parity-time symmetric transformation optics. , 2013, Optics letters.

[50]  Leonid A. Krivitsky,et al.  Quantum Spectroscopy of Plasmonic Nanostructures , 2014 .

[51]  Fano resonances in the overlapping regime , 2003, quant-ph/0305064.

[52]  Lan Yang,et al.  On-chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultra-high-Q Microresonator , 2009 .

[53]  Y. Kivshar,et al.  Nonlinear suppression of time reversals in PT-symmetric optical couplers , 2010, 1009.5428.

[54]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[55]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[56]  Dorje C Brody,et al.  Faster than Hermitian quantum mechanics. , 2007, Physical review letters.

[57]  Lan Yang,et al.  Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. , 2010, Optics express.

[58]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .