Near infrared electroluminescence from neodymium complex-doped polymer light emitting diodes

Abstract Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)3 complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at ∼1065 nm, was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the 4F3 / 2 → 4I11 / 2 levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm2 and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)3/Ca/Al devices.

[1]  F. E. Karasz,et al.  Electroluminescence of pure poly(N‐vinylcarbazole) and its blends with a multiblock copolymer , 1994 .

[2]  S. Nonell,et al.  Aromatic ketones as standards for singlet molecular oxygen O2(1Δg) photosensitization. Time-resolved photoacoustic and near-IR emission studies☆☆☆ , 1996 .

[3]  John R. Reynolds,et al.  Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends , 2001 .

[4]  K. Schanze,et al.  Near‐Infrared Electroluminescence from Lanthanide Tetraphenylporphyrin:Polystyrene Blends , 2003 .

[5]  H. Schoo,et al.  Infrared Electroluminescence in Polymer Composites Based on Organic Nanocrystals , 2004 .

[6]  Vojislav I. Srdanov,et al.  Narrow Bandwidth Luminescence from Blends with Energy Transfer from Semiconducting Conjugated Polymers to Europium Complexes , 1999 .

[7]  Tae-Sik Kang,et al.  Near-infrared organic light emitting diodes , 2003 .

[8]  W. Gillin,et al.  1.54 μm electroluminescence from erbium (III) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes , 1999 .

[9]  Franco Cacialli,et al.  Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex , 2001 .

[10]  I. Samuel,et al.  Time-dependence of erbium(III) tris(8-hydroxyquinolate) near-infrared photoluminescence: implications for organic light-emitting diode efficiency , 2003 .

[11]  K. Schanze,et al.  Donor–acceptor copolymers for red‐ and near‐infrared‐emitting polymer light‐emitting diodes , 2005 .

[12]  N. Turro Modern Molecular Photochemistry , 1978 .

[13]  K. Binnemans,et al.  Visible light sensitisation of europium(III) luminescence in a 9-hydroxyphenal-1-one complex. , 2005, Chemical communications.

[14]  W. Gillin,et al.  980 nm electroluminescence from ytterbium tris(8-hydroxyquinoline) , 2001 .

[15]  E. Oliveros,et al.  1H‐Phenalen‐1‐one: Photophysical Properties and Singlet‐Oxygen Production , 1991 .

[16]  R. Schmidt,et al.  Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization , 1994 .

[17]  Katsutoshi Nagai,et al.  Bright blue electroluminescence from poly(N‐vinylcarbazole) , 1993 .

[18]  T. Kitamura,et al.  Near-infrared Electroluminescence from Ytterbium(III) Complex , 2000 .

[19]  W. Gillin,et al.  Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline) , 2000 .

[20]  K. Schanze,et al.  Near-Infrared Photo- and Electroluminescence of Alkoxy-Substituted Poly(p-phenylene) and Nonconjugated Polymer/Lanthanide Tetraphenylporphyrin Blends , 2004 .

[21]  Shui-Tong Lee,et al.  Improved performance of electroluminescent devices based on an europium complex , 2000 .

[22]  T. Kitamura,et al.  Observation of neodymium electroluminescence , 1999 .

[23]  Ruoyuan Li,et al.  Infrared electroluminescence of ytterbium complexes in organic light emitting diodes , 2001 .

[24]  Y. Wada,et al.  Near-Infrared Photoluminescence and Electroluminescence of Neodymium(III), Erbium(III), and Ytterbium(III) Complexes , 2001 .