Evolutionary Multi-Objective Decision Support Systems for Conceptual Design

In this thesis the problem of conceptual engineering design and the possible use of adaptive search techniques and other machine based methods therein are expl or d. For the multi–objective optimisation (MOO) within conceptual design problem, genetic a lgorithms (GA) adapted to MOO are used and various techniques explored: weighted sums, lexic ographic order, Pareto method with and without ranking, VEGA–like approaches etc. Large number of uns are performed for finding the optimal configuration and setting of the GA parameters. A nov el method,weighted Pareto method is introduced and applied to a real–world optimisation proble m. Decision support methods within conceptual engineering de sign framework are discussed and a new preference method developed. The preference method for tra nslating vague qualitative categories (such as “more important”, “much less important” etc.) into quantitative values (numbers) is based on fuzzy preferences and graph theory methods. Several appl ic tions of preferences are presented and discussed: in weighted sum based optimisation methods; in weighted Pareto method; for ordering and manipulating constraints and scenarios; for a co-evolutionary, distributive GA–based MOO method; The issue of complexity and sensitivity is addressed as well as potential generalisations of presented preference methods. Interactive dynamical constraints in the form of design scenarios are introduced. These are based on a propositional logic and a fairly rich mat hematical language. They can be added, deleted and modified on–line during the design session witho ut need for recompiling the code. The use of machine–based agents in conceptual design proces s is investigated. They are classified into several different categories (e.g. interface agents, search agents, information agents). Several different categories of agents performing various special ised task are developed (mostly dealing with preferences, but also some filtering ones). They are integra t d with the conceptual engineering design system to form a closed loop system that includes both comput er and designer. All these different aspects of conceptual engineering desi gn are applied within Plymouth Engineering Design Centre / British Aerospace conceptual airframe desi gn project.

[1]  Hans Akkermans,et al.  Decentralized Markets versus Central Control: A Comparative Study , 1999, J. Artif. Intell. Res..

[2]  D. Davidson The Logic of Preference: An Essay. , 1966 .

[3]  C. A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[4]  Ian C. Parmee,et al.  Preliminary airframe design using co-evolutionary multiobjective genetic algorithms , 1999 .

[5]  Thomas Bck Generalized convergence models for tournament|and (1; ?)|selection , 1995 .

[6]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[7]  Seif Haridi,et al.  An Overview of the Andorra Kernel Language , 1991, ELP.

[8]  Jean-Yves Béziau,et al.  What is many-valued logic? , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.

[9]  Katia P. Sycara,et al.  Distributed Intelligent Agents , 1996, IEEE Expert.

[10]  Katia P. Sycara,et al.  Cooperative Negotiation in Concurrent Engineering Design , 1991, MIT-JSME Workshop.

[11]  Nicholas R. Jennings,et al.  Coordination in software agent systems , 1996 .

[12]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[13]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[14]  Vito F. Sinisi,et al.  Entailment: The Logic of Relevance and Necessity , 1996 .

[15]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[16]  Michael R. Genesereth,et al.  Software agents , 1994, CACM.

[17]  Kalyanmoy Deb,et al.  Nonlinear goal programming using multi-objective genetic algorithms , 2001, J. Oper. Res. Soc..

[18]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[19]  D Quagliarella Genetic algorithms and evolution strategy in engineering and computer science : recent advances and industrial applications , 1998 .

[20]  Aharon Ben-Tal,et al.  Characterization of Pareto and Lexicographic Optimal Solutions , 1980 .

[21]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[22]  Larry J. Eshelman,et al.  Foundations of Genetic Algorithms-2 , 1993 .

[23]  Nicholas R. Jennings,et al.  Applying agent technology , 1995, Appl. Artif. Intell..

[24]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[25]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[26]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[27]  E. Antonsson,et al.  Arrow's Theorem and Engineering Design Decision Making , 1999 .

[28]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[29]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[30]  Richard Milton Martin Intension and Decision: A Philosophical Study , 1966 .

[31]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[32]  Rüdiger Zarnekow,et al.  Intelligent software agents - foundations and applications , 1998 .

[33]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[34]  Kenneth J. Arrow,et al.  Social Choice and Justice , 1984 .

[35]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[36]  I. C. Parmee,et al.  Strategies for the Integration of Evolutionary/Adaptive Search with the Engineering Design Process , 1997 .

[37]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[38]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[39]  F. Lootsma Fuzzy Logic for Planning and Decision Making , 1997 .

[40]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[41]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[42]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[43]  S. N. K. Watt,et al.  Artificial Societies and Psychological Agents , 1997, Software Agents and Soft Computing.

[44]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[45]  Carlos A. Bana e Costa,et al.  An Additive Value Function Technique with a Fuzzy Outranking Relation for Dealing with Poor Intercriteria Preference Information , 1990 .

[46]  H. Piaggio Mathematical Analysis , 1955, Nature.

[47]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[48]  Timothy W. Finin,et al.  Specification of the KQML Agent-Communication Language , 1993 .

[49]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[50]  John S. Gero,et al.  Design Prototypes: A Knowledge Representation Schema for Design , 1990, AI Mag..

[51]  K. May Intransitivity, Utility, and the Aggregation of Preference Patterns , 1954 .

[52]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[53]  F. Glover Scatter search and path relinking , 1999 .

[54]  Michael Wooldridge,et al.  Software agent technologies , 1996 .

[55]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[56]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[57]  E. Jantsch The self-organizing universe : scientific and human implications of the emerging paradigm of evolution , 1980 .

[58]  Paul Slovic,et al.  Comparison of Bayesian and Regression Approaches to the Study of Information Processing in Judgment. , 1971 .

[59]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[60]  Alan D. Christiansen,et al.  An empirical study of evolutionary techniques for multiobjective optimization in engineering design , 1996 .

[61]  Florencio G. Asenjo,et al.  Logic of antinomies , 1975, Notre Dame J. Formal Log..

[62]  John J. Grefenstette,et al.  Evolutionary Algorithms for Reinforcement Learning , 1999, J. Artif. Intell. Res..

[63]  J. Michael Dunn,et al.  Relevance Logic and Entailment , 1986 .

[64]  John M. Vickers,et al.  Intension and decision , 1963 .

[65]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[66]  Joseph G. D’Ambrosio,et al.  ISMAUT Tools: A Software Tool Kit for Rational Tradeoffs Among Conflicting Objectives , 1996 .

[67]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[68]  G. H. Wright,et al.  Philosophical Logic: Philosophical Papers , 1983 .

[69]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[70]  F. Lootsma A model for the relative importance of the criteria in the Multiplicative AHP and SMART , 1996 .

[71]  D. Balmer Theoretical and Computational Aspects of Simulated Annealing , 1991 .

[72]  Ian C. Parmee,et al.  Use of Preferences for GA-based Multi-objective Optimisation , 1999, GECCO.

[73]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[74]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[75]  Ian C. Parmee,et al.  Evolutionary Design and Multi-objective Optimisation , 1998 .

[76]  P. Vincke Basic Concepts of Preference Modelling , 1990 .

[77]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[78]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[79]  Ian C. Parmee,et al.  Techniques to aid global search in engineering design , 1994, IEA/AIE '94.

[80]  John J. Grefenstette,et al.  Proceedings of the 1st International Conference on Genetic Algorithms , 1985 .

[81]  I. C. Parmee,et al.  Exploring The Design Potential Of Evolutionary / Adaptive Search And Other Computational Intelligence Technologies , 1998 .

[82]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[83]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[84]  Ian C. Parmee,et al.  Designer’s Preferences and Multi—objective Preliminary Design Processes , 2000 .

[85]  Donald W. Loveland,et al.  Automated theorem proving: a logical basis , 1978, Fundamental studies in computer science.

[86]  Andrew Kusiak,et al.  Intelligent Systems in Design and Manufacturing , 1994 .

[87]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[88]  Barbara Hayes-Roth,et al.  A Blackboard Architecture for Control , 1985, Artif. Intell..

[89]  Scott H. Clearwater,et al.  A Multi-Agent System for Controlling Building Environments , 1995, ICMAS.

[90]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[91]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[92]  Timothy D. Wilson,et al.  Telling more than we can know: Verbal reports on mental processes. , 1977 .

[93]  David C. Brown,et al.  SINE: support for single function agents , 1970 .

[94]  F. Lootsma Multicriteria decision analysis in a decision tree , 1997 .

[95]  Peter C. Fishburn,et al.  Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..

[96]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[97]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[98]  I. C. Parmee,et al.  Genetic algorithm-based multi-objective optimisation and conceptual engineering design , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[99]  Pattie Maes,et al.  Modeling Adaptive Autonomous Agents , 1993, Artificial Life.

[100]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[101]  Heinz Mühlenbein,et al.  Analysis of Selection, Mutation and Recombination in Genetic Algorithms , 1995, Evolution and Biocomputation.

[102]  Seif Haridi,et al.  An Introduction to AKL A Multi-Paradigm Programming Language , 1993, NATO ASI CP.

[103]  G. Wright The logic of preference reconsidered , 1972 .

[104]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[105]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[106]  A. Tversky Intransitivity of preferences. , 1969 .

[107]  Ian C. Parmee,et al.  Adaptive Computing in Design and Manufacture: The Integration of Evolutionary and Adaptive Computing Technologies with Product/System Design and Reali , 1998 .

[108]  G. Van Huylenbroeck,et al.  The conflict analysis method: bridging the gap between ELECTRE, PROMETHEE and ORESTE , 1995 .

[109]  Georges R. Harik,et al.  Foundations of Genetic Algorithms , 1997 .

[110]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[111]  Murray Hill,et al.  Yacc: Yet Another Compiler-Compiler , 1978 .

[112]  Ian C. Parmee,et al.  Introducing prototype interactive evolutionary systems for ill-defined, multi-objective design environments , 2001 .

[113]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[114]  B. Roy Decision-aid and decision-making , 1990 .

[115]  S. Vajda,et al.  GAMES AND DECISIONS; INTRODUCTION AND CRITICAL SURVEY. , 1958 .

[116]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[117]  J. Lin Maximal vectors and multi-objective optimization , 1976 .

[118]  Artificial Evolution: how and why? , 1997 .

[119]  B. Roy THE OUTRANKING APPROACH AND THE FOUNDATIONS OF ELECTRE METHODS , 1991 .

[120]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[121]  Francisco Herrera,et al.  Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations , 1998, Fuzzy Sets Syst..

[122]  Timothy W. Finin,et al.  A Proposal for a new KQML Specification , 1997 .

[123]  Ian C. Parmee,et al.  GENETIC ALGORITHMS BASED SYSTEMS FOR CONCEPTUAL ENGINEERING DESIGN , 1999 .

[124]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[125]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[126]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[127]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[128]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[129]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[130]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[131]  Peter C. Fisi-Iburn Nontransitive preferences in decision theory , 1991 .

[132]  Bertrand Mareschal,et al.  The PROMCALC & GAIA decision support system for multicriteria decision aid , 1994, Decis. Support Syst..

[133]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[134]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[135]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[136]  Heinz Mühlenbein,et al.  Fuzzy Recombination for the Breeder Genetic Algorithm , 1995, ICGA.

[137]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[138]  Clive L. Dym,et al.  Engineering Design: A Synthesis of Views , 1994 .

[139]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[140]  K. Deb Non-linear Goal Programming Using Multi-Objective Genetic Algorithms , 1998 .

[141]  David C. Brown,et al.  Conflicts and Negotiation in Single Function Agent Based Design Systems , 1996 .

[142]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[143]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[144]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[145]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[146]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[147]  Ian C. Parmee,et al.  Multiobjective Satisfaction within an Interactive Evolutionary Design Environment , 2000, Evolutionary Computation.

[148]  Lorenzo Peña y Gonzalo Paraconsistent logic: essays on the inconsistent , 1990 .

[149]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[150]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[151]  Ashok K. Goel Design, Analogy, and Creativity , 1997, IEEE Expert.

[152]  Jian-Bo Yang,et al.  Multiple Criteria Decision Support in Engineering Design , 1998 .

[153]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[154]  John Stufken,et al.  Taguchi Methods: A Hands-On Approach , 1992 .

[155]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[156]  I. C. Parmee Evolutionary design and manufacture : selected papers from ACDM '00 , 2000 .

[157]  Dragan Cvetkovic,et al.  The Optimal Population Size for Uniform Crossover and Truncation Selection , 1994 .

[158]  G. Grätzer General Lattice Theory , 1978 .

[159]  Lothar Thiele,et al.  A Mathematical Analysis of Tournament Selection , 1995, ICGA.

[160]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[161]  G. Grätzer,et al.  Lattice Theory: First Concepts and Distributive Lattices , 1971 .

[162]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[163]  Ian C. Parmee,et al.  Multi-objective Optimisation and Preliminary Airframe Design , 1998 .

[164]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[165]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[166]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[167]  Ian C. Parmee,et al.  An Investigation of Exploration and Exploitation Within Cluster Oriented Genetic Algorithms (COGAs) , 1999, GECCO.

[168]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[169]  Newton C. A. da Costa,et al.  On the theory of inconsistent formal systems , 1974, Notre Dame J. Formal Log..

[170]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..