Polar stratospheric cloud threshold temperatures in the 1995–1996 arctic vortex

Balloon-borne backscattersondes have been used to study the relationship between particle scattering and ambient temperature near the vertical edge of arctic polar stratospheric clouds (PSCs) as well as to delineate the cloud type occurrence probability as a function of temperature. The observed typical threshold temperatures as a function of altitude are about1°K warmer than the temperature TSTS expected for rapid growth of supercooled ternary solution aerosols. A more descriptive analysis shows that the threshold temperatures occur over a definable range of temperatures and tend to cluster near, but somewhat warmer than, TSTS. Considering the experimental and theoretical uncertainties, this difference may not be significant. The probability of type Ib PSC occurrence shows a dramatic increase at TSTS±1°K, while for type Ia PSCs the probability is roughly constant at 10% for temperatures below the formation point of nitric acid trihydrate (TNAT).

[1]  Thomas Peter,et al.  Densities and refractive indices of H2SO4/HNO3/H2O solutions to stratospheric temperatures , 1996 .

[2]  Michael Höpfner,et al.  Evidence for the removal of gaseous HNO3 inside the arctic polar vortex in January 1992 , 1996 .

[3]  D. Murphy,et al.  Mesoscale temperature fluctuations and polar stratospheric clouds , 1995 .

[4]  G. Fiocco,et al.  Backscatter measurements of stratospheric aerosols at Thule during January-February 1992 , 1994 .

[5]  B. Luo,et al.  An analytic expression for the composition of aqueous HNO3‐H2SO4 stratospheric aerosols including gas phase removal of HNO3 , 1995 .

[6]  Roland Neuber,et al.  Temperature histories in liquid and solid polar stratospheric cloud formation , 1997 .

[7]  R. Turco,et al.  On the growth of ternary system HNO3/H2SO4/H2O aerosol particles in the stratosphere , 1996 .

[8]  K. Carslaw,et al.  Melting of H2SO4·4H2O Particles upon Cooling: Implications for Polar Stratospheric Clouds , 1996, Science.

[9]  P. Crutzen,et al.  Size-dependent stratospheric droplet composition in Lee wave temperature fluctuations and their potential role in PSC freezing , 1995 .

[10]  David R. Hanson,et al.  Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere , 1988 .

[11]  N. S. Higdon,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .

[12]  Mark Z. Jacobson,et al.  A model for studying the composition and chemical effects of stratospheric aerosols , 1994 .

[13]  J. Rosen,et al.  Penetration of Mt. Pinatubo aerosols into the north polar vortex , 1992 .

[14]  P. Crutzen,et al.  Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’ , 1986, Nature.

[15]  S. Oltmans,et al.  Simultaneous ozone and polar stratospheric cloud observations at South Pole station during winter and spring 1991 , 1993 .

[16]  L. Froidevaux,et al.  Polar Vortex Conditions During The 1995-96 Arctic Winter: MLS ClO and HNO3 , 1996 .

[17]  James E. Dye,et al.  Analysis of the physical state of one Arctic polar stratospheric , 1994 .

[18]  Mark R. Schoeberl,et al.  A multiple‐level trajectory analysis of vortex filaments , 1995 .

[19]  J. Rosen,et al.  Backscattersonde: a new instrument for atmospheric aerosol research. , 1991, Applied optics.

[20]  E. Kyrö,et al.  Balloonborne backscatter observations of type 1 PSC formation : Inference about physical state from trajectory analysis , 1996 .

[21]  R. Turco,et al.  Condensation of HNO3 and HCl in the winter polar stratospheres , 1986 .

[22]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[23]  J. Bacmeister,et al.  Observational constraints on the formation of type ia polar stratospheric clouds , 1996 .

[24]  J. Rosen,et al.  Deliquescence and freezing of stratospheric aerosol observed by balloonborne backscattersondes , 1995 .

[25]  James M. Rosen,et al.  Stratospheric Aerosol Measurements III: Optical Model Calculations , 1976 .

[26]  L. Froidevaux,et al.  Polar vortex conditions during the 1995-96 Arctic winter : Meteorology and MLS ozone , 1996 .

[27]  Paul J. Crutzen,et al.  Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles , 1994 .

[28]  J. Ponche,et al.  Vapor pressures in the ternary system water‐nitric acid‐sulfuric acid at low temperature: A reexamination , 1996 .

[29]  B. Luo,et al.  vapour pressures of H2SO4/HNO3/HCl/HBr/H2O solutions to low stratospheric temperatures , 1995 .

[30]  O. Toon,et al.  The presence of metastable HNO3/H2O solid phases in the stratosphere inferred from ER 2 data , 1996 .

[31]  D. Fahey,et al.  In‐situ observations of an Antarctic polar stratospheric cloud: Similarities with Arctic observations , 1996 .

[32]  G. Beyerle,et al.  Temperature dependence of ternary solution particle volumes as observed by lidar in the Arctic stratosphere during winter 1992/1993 , 1997 .

[33]  M. Pitts,et al.  Polar stratospheric cloud climatology based on Stratospheric Aerosol Measurement II observations from 1978 to 1989 , 1994 .

[34]  R. Turco,et al.  A study of type I polar stratospheric cloud formation , 1994 .

[35]  D. Fahey,et al.  In situ measurements of total reactive nitrogen, total water, and aerosol in a polar stratospheric cloud in the Antarctic , 1989 .

[36]  M. Rummukainen,et al.  Dehydration and sedimentation of ice particles in the Arctic stratospheric vortex , 1997 .

[37]  S. Pawson,et al.  The cold stratospheric winters 1994/1995 and 1995/1996 , 1996 .