L-algebras in logic, algebra, geometry, and topology

An intuitive introduction to L-algebras and their relationship to groups with a one- or two-sided lattice ordering is given, with applications in algebra, analysis, and geometry.

[1]  Wolfgang Rump SEMIDIRECT PRODUCTS IN ALGEBRAIC LOGIC AND SOLUTIONS OF THE QUANTUM YANG–BAXTER EQUATION , 2008 .

[2]  Wolfgang Rump,et al.  A covering theory for non-involutive set-theoretic solutions to the Yang–Baxter equation , 2019, Journal of Algebra.

[3]  Wolfgang Rump,et al.  The Structure Group of a Generalized Orthomodular Lattice , 2018, Stud Logica.

[4]  Robert Piziak,et al.  Implication connectives in orthomodular lattices , 1975, Notre Dame J. Formal Log..

[5]  Nathan Jacobson,et al.  Structure of rings , 1956 .

[6]  S. Matveev DISTRIBUTIVE GROUPOIDS IN KNOT THEORY , 1984 .

[7]  David Joyce,et al.  A classifying invariant of knots, the knot quandle , 1982 .

[8]  W. Nemitz Implicative semi-lattices , 1965 .

[9]  Bruno Bosbach Rechtskomplementäre Halbgruppen. Axiome, Polynome, Kongruenzen , 1972 .

[10]  E. Artin The theory of braids. , 1950, American scientist.

[11]  Wolfgang Rump,et al.  A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation , 2005 .

[12]  Wolfgang Rump,et al.  Right l-groups, geometric Garside groups, and solutions of the quantum Yang–Baxter equation , 2015 .

[13]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[14]  W. Rump L-algebras, self-similarity, and l-groups , 2008 .

[15]  Wolfgang Rump The structure group of an L-algebra is torsion-free , 2016 .

[16]  Wolfgang Rump,et al.  Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups , 2018, Forum Mathematicum.

[17]  Patrick Dehornoy Groupes de Garside , 2001 .

[18]  P. Köhler The semigroup of varieties of Brouwerian semilattices , 1978 .

[19]  Wolfgang Rump,et al.  Braces, radical rings, and the quantum Yang–Baxter equation , 2007 .

[20]  Patrick Dehornoy,et al.  Groups with a complemented presentation , 1997 .

[21]  Alfred Horn,et al.  Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.