Efficient Combinatorial Optimization under Uncertainty. 2. Application to Stochastic Solvent Selection

Solvent selection is an important step in process synthesis, design, or process modification. The computer-aided molecular design (CAMD) approach, based on the reverse use of group contribution methods, provides a promising tool for solvent selection. However, uncertainties inherent in these techniques and associated models are often neglected. This paper, part 2 of the series, presents a new approach to solvent selection under uncertainty using the Hammersley stochastic annealing (HSTA) algorithm. A real world case study of acetic acid extraction from water, based on two stochastic CAMD models, namely, the infinite dilution activity coefficient model and the solubility parameter model, is presented. This example illustrates the importance of uncertainty in CAMD and demonstrates the usefulness of this HSTA approach to obtain robust decisions.

[1]  R. Gani,et al.  A group contribution approach to computer‐aided molecular design , 1991 .

[2]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[3]  Jiding Li,et al.  A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties , 1993 .

[4]  Luke E. K. Achenie,et al.  Novel Mathematical Programming Model for Computer Aided Molecular Design , 1996 .

[5]  Manish Sinha,et al.  Environmentally benign solvent design by global optimization , 1999 .

[6]  Malcolm H. I. Baird,et al.  Handbook of Solvent Extraction , 1991 .

[7]  Antonis C. Kokossis,et al.  Molecular design synthesis using stochastic optimisation as a tool for scoping and screening , 1998 .

[8]  C. Hansen,et al.  The Universality of the Solubility Parameter , 1969 .

[9]  M. M. El-Halwagi,et al.  Pollution prevention via process and product modifications , 1994 .

[10]  Costas D. Maranas,et al.  Optimal molecular design under property prediction uncertainty , 1997 .

[11]  Rafiqul Gani,et al.  MOLECULAR DESIGN OF SOLVENTS FOR LIQUID EXTRACTION BASED ON UNIFAC , 1983 .

[12]  Urmila M. Diwekar,et al.  Efficient Combinatorial Optimization under Uncertainty. 1. Algorithmic Development , 2002 .

[13]  A. Medina,et al.  Infinite dilution activity coefficients predicted by UNIFAC group contribution , 1988 .

[14]  Mahmoud M. El-Halwagi,et al.  Computer-aided synthesis of polymers and blends with target properties , 1996 .

[15]  Sandro Macchietto,et al.  Computer aided molecular design: a novel method for optimal solvent selection , 1993 .

[16]  C. Maranas Optimal Computer-Aided Molecular Design: A Polymer Design Case Study , 1996 .

[17]  Gary F. Bennett Solvent substitution for pollution prevention : U.S. Department of Energy and U.S. Air Force, Noyes Data Corp., Park Ridge, NJ, ISBN 0-8155-1319-4, 1992, 335 pp., $48. , 1993 .

[18]  Martin A. Abraham,et al.  Clean solvents : alternative media for chemical reactions and processing , 2002 .

[19]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[20]  Subba R. Nishtala,et al.  Designining Environmentally Benign Solvent Substitutes , 1999 .

[21]  Efstratios N. Pistikopoulos,et al.  Optimal design of solvent blends for environmental impact minimization , 1999 .

[22]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[23]  Ki Joo Kim,et al.  Greener solvent selection under uncertainty , 2002 .

[24]  Jürgen Gmehling,et al.  Group contribution methods for the estimation of activity coefficients , 1986 .

[25]  Heriberto Cabezas,et al.  Molecular Thermodynamics in the Design of Substitute Solvents , 1998 .

[26]  Kevin G Joback,et al.  Designing molecules possessing desired physical property values , 1989 .

[27]  Antonis C. Kokossis,et al.  On the development of novel chemicals using a systematic synthesis approach. Part I. Optimisation framework , 2000 .

[28]  Allan F. M. Barton,et al.  CRC Handbook of solubility parameters and other cohesion parameters , 1983 .

[29]  C. Panayiotou Solubility parameter revisited: an equation-of-state approach for its estimation , 1997 .

[30]  Rafiqul Gani,et al.  Design of environmentally benign processes: integration of solvent design and separation process synthesis , 1999 .

[31]  Esteban A. Brignole,et al.  Computer‐aided molecular design of solvents for separation processes , 1994 .

[32]  Venkat Venkatasubramanian,et al.  Computer-aided molecular design using genetic algorithms , 1994 .

[33]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[34]  Suojiang Zhang,et al.  Prediction of infinite dilution activity coefficients in aqueous solutions by group contribution models. A critical evaluation , 1998 .

[35]  Urmila M. Diwekar,et al.  Efficient Combinatorial Optimization under Uncertainty. 1. Algorithmic Development , 2002 .