Harmonization of Brain Diffusion MRI: Concepts and Methods

MRI diffusion data suffers from significant inter- and intra-site variability, which hinders multi-site and/or longitudinal diffusion studies. This variability may arise from a range of factors, such as hardware, reconstruction algorithms and acquisition settings. To allow a reliable comparison and joint analysis of diffusion data across sites and over time, there is a clear need for robust data harmonization methods. This review article provides a comprehensive overview of diffusion data harmonization concepts and methods, and their limitations. Overall, the methods for the harmonization of multi-site diffusion images can be categorized in two main groups: diffusion parametric map harmonization (DPMH) and diffusion weighted image harmonization (DWIH). Whereas DPMH harmonizes the diffusion parametric maps (e.g., FA, MD, and MK), DWIH harmonizes the diffusion-weighted images. Defining a gold standard harmonization technique for dMRI data is still an ongoing challenge. Nevertheless, in this paper we provide two classification tools, namely a feature table and a flowchart, which aim to guide the readers in selecting an appropriate harmonization method for their study.

[1]  Yogesh Rathi,et al.  Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters , 2019, NeuroImage.

[2]  Paul M. Thompson,et al.  Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3 , 2018, bioRxiv.

[3]  D. Schnyer,et al.  Toward Precision and Reproducibility of Diffusion Tensor Imaging: A Multicenter Diffusion Phantom and Traveling Volunteer Study , 2016, American Journal of Neuroradiology.

[4]  Jan Sijbers,et al.  Technical Note: A safe, cheap, and easy‐to‐use isotropic diffusion MRI phantom for clinical and multicenter studies , 2017, Medical physics.

[5]  D. Auer,et al.  Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain , 2015, NMR in biomedicine.

[6]  A. Baghestani,et al.  How to control confounding effects by statistical analysis , 2012, Gastroenterology and hepatology from bed to bench.

[7]  K. Kapur,et al.  Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study , 2019, Front. Integr. Neurosci..

[8]  Daniel H. Mathalon,et al.  Reliability of functional magnetic resonance imaging activation during working memory in a multisite study: Clarification and implications for statistical power , 2017, NeuroImage.

[9]  Brian A. Nosek,et al.  Power failure: why small sample size undermines the reliability of neuroscience , 2013, Nature Reviews Neuroscience.

[10]  Rakesh K. Gupta,et al.  Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: Its correlation with neuropsychometric tests , 2009, Brain injury.

[11]  Dorit Merhof,et al.  DELIMIT PyTorch - An extension for Deep Learning in Diffusion Imaging , 2018, ArXiv.

[12]  William H. Hampton,et al.  Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling , 2015 .

[13]  D. Smeets,et al.  Potential of a statistical approach for the standardization of multicenter diffusion tensor data: A phantom study , 2019, Journal of magnetic resonance imaging : JMRI.

[14]  Ting Gong,et al.  Reproducibility of multi-shell diffusion tractography on traveling subjects: A multicenter study prospective. , 2019, Magnetic resonance imaging.

[15]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[16]  Russell T. Shinohara,et al.  Removing inter-subject technical variability in magnetic resonance imaging studies , 2016, NeuroImage.

[17]  C. Jack,et al.  Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom , 2018, Magnetic resonance in medicine.

[18]  Xing Qiu,et al.  Quantification of accuracy and precision of multi-center DTI measurements: A diffusion phantom and human brain study , 2011, NeuroImage.

[19]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[20]  Yogesh Rathi,et al.  White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study , 2019, Molecular Psychiatry.

[21]  Dan J Stein,et al.  Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group , 2017, Molecular Psychiatry.

[22]  Carlo Pierpaoli,et al.  Harmonization of methods to facilitate reproducibility in medical data processing: Applications to diffusion tensor magnetic resonance imaging , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[23]  Carlo Pierpaoli,et al.  A framework for the analysis of phantom data in multicenter diffusion tensor imaging studies , 2013, Human brain mapping.

[24]  J. Debbins,et al.  A Validation Study of Multicenter Diffusion Tensor Imaging: Reliability of Fractional Anisotropy and Diffusivity Values , 2012, American Journal of Neuroradiology.

[25]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[26]  Arthur W. Toga,et al.  Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling , 2014, NeuroImage.

[27]  Maxime Descoteaux,et al.  Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising , 2016, Medical Image Anal..

[28]  John S. Duncan,et al.  Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners , 2010, NeuroImage.

[29]  Daniel Cremers,et al.  q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans , 2016, IEEE Transactions on Medical Imaging.

[30]  Thomas E. Nichols,et al.  Statistical Challenges in “Big Data” Human Neuroimaging , 2018, Neuron.

[31]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[32]  Antonio Criminisi,et al.  Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution , 2017, MICCAI.

[33]  Pew-Thian Yap,et al.  Multi-Site Harmonization of Diffusion MRI Data via Method of Moments , 2019, IEEE Transactions on Medical Imaging.

[34]  Peter Savadjiev,et al.  Inter-site and inter-scanner diffusion MRI data harmonization , 2016, NeuroImage.

[35]  Peter Savadjiev,et al.  Multi-site harmonization of diffusion MRI data in a registration framework , 2017, Brain Imaging and Behavior.

[36]  Theo G. M. van Erp,et al.  Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: Analysis from the North American Prodrome Longitudinal Study , 2014, NeuroImage.

[37]  Stefan Klein,et al.  Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease , 2013, Front. Neuroinform..

[38]  Derek K. Jones,et al.  Precision and Accuracy in Diffusion Tensor Magnetic Resonance Imaging , 2010, Topics in magnetic resonance imaging : TMRI.

[39]  Paul M. Thompson,et al.  Challenges and Opportunities in dMRI Data Harmonization , 2019, Computational Diffusion MRI.

[40]  Diana B. Petitti,et al.  Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis: Methods for Quantitative Synthesis in Medicine , 1994 .

[41]  Magda Tsolaki,et al.  Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects , 2014, NeuroImage.

[42]  Josien P. W. Pluim,et al.  Muti-shell Diffusion MRI Harmonisation and Enhancement Challenge (MUSHAC): Progress and Results , 2019, Computational Diffusion MRI.

[43]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[44]  Peter Savadjiev,et al.  Harmonizing Diffusion MRI Data Across Multiple Sites and Scanners , 2015, MICCAI.

[45]  F. Barkhof,et al.  Harmonization of neuroimaging biomarkers for neurodegenerative diseases: A survey in the imaging community of perceived barriers and suggested actions , 2018, Alzheimer's & dementia.

[46]  Stephen M. Smith,et al.  Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies , 2009, NeuroImage.

[47]  Luke Bloy,et al.  Spherical Harmonic Residual Network for Diffusion Signal Harmonization , 2018, Computational Diffusion MRI.

[48]  Tufve Nyholm,et al.  Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study , 2013, Radiation oncology.

[49]  Jelle Veraart,et al.  Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms , 2019, NeuroImage.

[50]  Dorit Merhof,et al.  Diffusion MRI Signal Augmentation: From Single Shell to Multi Shell with Deep Learning , 2016, MICCAI 2016.

[51]  Sylvain Paile,et al.  WHAT TO CONTROL , 2013 .

[52]  Richard Frayne,et al.  Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis , 2014, Human brain mapping.

[53]  S Ekholm,et al.  Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. , 2006, AJNR. American journal of neuroradiology.

[54]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[55]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[56]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[57]  A. Pfefferbaum,et al.  Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain , 2003, Journal of magnetic resonance imaging : JMRI.

[58]  Kilian M. Pohl,et al.  Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study , 2016, NeuroImage.

[59]  Ragini Verma,et al.  Harmonization of multi-site diffusion tensor imaging data , 2017, NeuroImage.

[60]  A. Saykin,et al.  Stability of MRI metrics in the advanced research core of the NCAA-DoD concussion assessment, research and education (CARE) consortium , 2017, Brain Imaging and Behavior.

[61]  Nick C Fox,et al.  Longitudinal Diffusion Tensor Imaging in Frontotemporal Dementia , 2014, Annals of neurology.

[62]  Yu-Chien Wu,et al.  Comparison of diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without parallel imaging. , 2006, Neuroimaging clinics of North America.

[63]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[64]  Stefan Klöppel,et al.  Anatomical MRI and DTI in the diagnosis of Alzheimer's disease: a European multicenter study. , 2012, Journal of Alzheimer's disease : JAD.

[65]  Paul M. Thompson,et al.  Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group , 2013, NeuroImage.

[66]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Stefan Klöppel,et al.  Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study , 2011, Psychiatry Research: Neuroimaging.

[68]  A. Worsley Nutrition knowledge and food consumption: can nutrition knowledge change food behaviour? , 2002, Asia Pacific journal of clinical nutrition.