Sparse estimation of high-dimensional correlation matrices

Several attempts to estimate covariance matrices with sparsity constraints have been made. A convex optimization formulation for estimating correlation matrices as opposed to covariance matrices is proposed. An efficient accelerated proximal gradient algorithm is developed, and it is shown that this method gives a faster rate of convergence. An adaptive version of this approach is also discussed. Simulation results and an analysis of a cardiovascular microarray confirm its performance and usefulness.

[1]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[2]  Lie Wang,et al.  Sparse Covariance Matrix Estimation With Eigenvalue Constraints , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[3]  B. Efron Are a set of microarrays independent of each other? , 2009, The annals of applied statistics.

[4]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[5]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[6]  H. Zou,et al.  Positive Definite $\ell_1$ Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.

[7]  Harrison H. Zhou,et al.  OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.

[8]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[9]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[10]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[11]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[12]  Defeng Sun,et al.  A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..

[13]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[14]  Feng Yi,et al.  SURE-tuned tapering estimation of large covariance matrices , 2013, Comput. Stat. Data Anal..

[15]  Bradley Efron,et al.  Large-scale inference , 2010 .

[16]  R. Tibshirani,et al.  Sparse estimation of a covariance matrix. , 2011, Biometrika.

[17]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[18]  Ashwini Maurya,et al.  A joint convex penalty for inverse covariance matrix estimation , 2014, Comput. Stat. Data Anal..

[19]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[20]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[21]  Adam J. Rothman Positive definite estimators of large covariance matrices , 2012 .

[22]  M. Yuan,et al.  Adaptive covariance matrix estimation through block thresholding , 2012, 1211.0459.

[23]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[24]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[25]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[26]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[27]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.