Bundle methods for dual atomic pursuit
暂无分享,去创建一个
[1] Dmitriy Drusvyatskiy,et al. Foundations of Gauge and Perspective Duality , 2017, SIAM J. Optim..
[2] Yonina C. Eldar,et al. Phase Retrieval via Matrix Completion , 2011, SIAM Rev..
[3] Joel A. Tropp,et al. Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.
[4] Krzysztof C. Kiwiel,et al. Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..
[5] J. Y. Bello Cruz,et al. Level bundle-like algorithms for convex optimization , 2013, Journal of Global Optimization.
[6] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[7] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[8] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[9] Michael P. Friedlander,et al. Gauge Optimization and Duality , 2013, SIAM J. Optim..
[10] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[11] F. Bonsall. A GENERAL ATOMIC DECOMPOSITION THEOREM AND BANACH'S CLOSED RANGE THEOREM , 1991 .
[12] Yurii Nesterov,et al. New variants of bundle methods , 1995, Math. Program..
[13] Per Olov Lindberg,et al. A descent proximal level bundle method for convex nondifferentiable optimization , 1995, Oper. Res. Lett..
[14] Michael P. Friedlander,et al. Low-Rank Spectral Optimization via Gauge Duality , 2015, SIAM J. Sci. Comput..
[15] Weiyu Xu,et al. Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization , 2008, 2008 47th IEEE Conference on Decision and Control.
[16] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[17] Volkan Cevher,et al. An Optimal-Storage Approach to Semidefinite Programming using Approximate Complementarity , 2019, SIAM J. Optim..
[18] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[19] D. Donoho. For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .