Electrochemical Detection with Platinum Decorated Carbon Nanomaterials

Here we performed amperometric detection of hydrogen peroxide (H2O2) using single-walled carbon nanotubes (SWNTs), chemically converted graphene (CCG), and sulfonated CCG (CCG-S) decorated with Pt nanoparticles (NPs). Although all three systems demonstrated similar detection limits for H2O2, compared to the other two nanomaterials, Pt-SWNTs provided a higher sensitivity with only half of the Pt amount. This result was consistent with cyclic voltammetry, electrochemical impedance spectroscopy, and field-effect transistor measurements. We attribute the higher sensitivity of Pt-SWNTs to both the surface roughness of the electrode and the intimate contact between Pt NPs and one-dimensional nanostructures (SWNTs) versus two-dimensional nanostructures (graphene).

[1]  Douglas R. Kauffman,et al.  Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. , 2010, The Analyst.

[2]  K. Swider-Lyons,et al.  Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. , 2010, Analytical chemistry.

[3]  Shaojun Dong,et al.  Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. , 2010, ACS nano.

[4]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[5]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[6]  Douglas R. Kauffman,et al.  Understanding the sensor response of metal-decorated carbon nanotubes. , 2010, Nano letters.

[7]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[8]  Jun Liu,et al.  Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. , 2009, Talanta.

[9]  M. Pumera,et al.  What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? , 2009, Nanoscale.

[10]  Douglas R. Kauffman,et al.  Electrocatalytic activity of nitrogen-doped carbon nanotube cups. , 2009, Journal of the American Chemical Society.

[11]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[12]  Edward T. Samulski,et al.  Exfoliated Graphene Separated by Platinum Nanoparticles , 2008 .

[13]  Priscilla Kailian Ang,et al.  Solution-gated epitaxial graphene as pH sensor. , 2008, Journal of the American Chemical Society.

[14]  Douglas R. Kauffman,et al.  Carbon nanotube gas and vapor sensors. , 2008, Angewandte Chemie.

[15]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[16]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[17]  E. Samulski,et al.  Synthesis of water soluble graphene. , 2008, Nano letters.

[18]  Douglas R. Kauffman,et al.  Electronically monitoring biological interactions with carbon nanotube field-effect transistors. , 2008, Chemical Society reviews.

[19]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[20]  Joseph Wang Electrochemical glucose biosensors. , 2008, Chemical reviews.

[21]  G. Rivas,et al.  Carbon nanotubes for electrochemical biosensing. , 2007, Talanta.

[22]  Douglas R. Kauffman,et al.  Chemically induced potential barriers at the carbon nanotube-metal nanoparticle interface. , 2007, Nano letters.

[23]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[24]  S. Stankovich,et al.  Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) , 2006 .

[25]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[26]  Young-Min Choi,et al.  The effect of metal cluster coatings on carbon nanotubes , 2006 .

[27]  C. Banks,et al.  Edge Plane Pyrolytic Graphite Electrodes in Electroanalysis: An Overview , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[28]  E. Campbell,et al.  Alternating current dielectrophoresis of carbon nanotubes , 2005 .

[29]  Howard E. Katz,et al.  Chemically Sensitive Field‐Effect Transistors and Chemiresistors: New Materials and Device Structures , 2004 .

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[31]  J. Luong,et al.  Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. , 2004, Analytical chemistry.

[32]  Wlodzimierz Kutner,et al.  Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes , 2003 .

[33]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[34]  T. Nussbaumer,et al.  Electrochemical carbon nanotube field-effect transistor , 2000, cond-mat/0009171.

[35]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[36]  Andrew Zangwill,et al.  Physics at Surfaces: Physisorption , 1988 .