Sequential sampling designs for the two-parameter item response theory model

In optimal design research, designs are optimized with respect to some statistical criterion under a certain model for the data. The ideas from optimal design research have spread into various fields of research, and recently have been adopted in test theory and applied to item response theory (IRT) models. In this paper a generalized variance criterion is used for sequential sampling in the two-parameter IRT model. Some general principles are offered to enable a researcher to select the best sampling design for the efficient estimation of item parameters.

[1]  S. Minkin Optimal Designs for Binary Data , 1987 .

[2]  C. David Vale,et al.  Linking Item Parameters Onto a Common Scale , 1986 .

[3]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[4]  D. D. Gruijter Standard Errors of Item Parameter Estimates in Incomplete Designs , 1988 .

[5]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[6]  F. Drasgow,et al.  Lord's Chi-Square Test of Item Bias With Estimated and With Known Person Parameters , 1987 .

[7]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[8]  M. Berger,et al.  On the Efficiency of IRT Models When Applied to Different Sampling Designs , 1991 .

[9]  Frederic M. Lord,et al.  ESTIMATING NORMS BY ITEM SAMPLING , 1961 .

[10]  Christine E. DeMars,et al.  Item Response Theory , 2010, Assessing Measurement Invariance for Applied Research.

[11]  A. Atkinson Developments in the Design of Experiments, Correspondent Paper , 1982 .

[12]  D. D. Gruijter A note on the asymptotic variance-covariance matrix of item parameter estimates in the rasch model , 1985 .

[13]  M. K. Khan,et al.  On d-optimal designs for binary data , 1988 .

[14]  A. C. Atkinson,et al.  Developments in the Design of Experiments , 1982 .

[15]  R. D. Cook,et al.  A Comparison of Algorithms for Constructing Exact D-Optimal Designs , 1980 .

[16]  Willem J. van der Linden,et al.  Optimality of sampling designs in item response theory models , 1991 .

[17]  Ellen Boekkooi-Timminga,et al.  IRT-based test construction , 1987 .

[18]  F. Lord,et al.  Sampling Variances and Covariances of Parameter Estimates in Item Response Theory. , 1982 .

[19]  F. Lord,et al.  An Investigation of Methods for Reducing Sampling Error in Certain IRT (Item Response Theory) Procedures. , 1983 .

[20]  Martha L. Stocking,et al.  Specifying optimum examinees for item parameter estimation in item response theory , 1990 .

[21]  Khidir M. Abdelbasit,et al.  Experimental Design for Binary Data , 1983 .

[22]  F. Lord,et al.  An Investigation of Methods for Reducing Sampling Error in Certain IRT Procedures , 1983 .

[23]  A. Wald On the Efficient Design of Statistical Investigations , 1943 .

[24]  H. Wainer,et al.  Some standard errors in item response theory , 1982 .

[25]  Robert C. Sykes,et al.  Nonunique solutions to the likelihood equation for the three-parameter logistic model , 1991 .

[26]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .