Current-mode capacitorless integrators and differentiators for implementing emulators of fractional-order elements

Abstract Fractional-order capacitor and inductor emulator, implemented using current-mirrors as active elements and MOS transistors as capacitors, is introduced in this paper. Current-mirror integrators are used for performing the required current-mode integration/differentiation operation within the emulator stage. Also, a voltage-to-current converter, implemented using an Operational Transconductance Amplifier, is utilized for realizing the required interface of the input signal. Thus, the proposed emulator is simultaneously capacitorless and resistorless and offers the advantage of electronic tuning of the characteristics as well as of the type of the emulated fractional-order element. In addition, a modified version of the emulator that allows current excitation is proposed. The evaluation of the behavior of the proposed schemes has been performed using the Cadence IC design suite and the Design Kit provided by the Austrian Micro Systems 0.35 μm CMOS process.

[1]  Ahmed S. Elwakil,et al.  Emulation of current excited fractional-order capacitors and inductors using OTA topologies , 2016, Microelectron. J..

[2]  Costas Psychalinos,et al.  Capacitorless digitally programmable fractional-order filters , 2017 .

[3]  S. Westerlund,et al.  Capacitor theory , 1994 .

[4]  Ahmed S. Elwakil,et al.  Experimental Verification of Fractional-Order Filters Using a Reconfigurable Fractional-Order Impedance Emulator , 2017, J. Circuits Syst. Comput..

[5]  Esther Rodríguez-Villegas,et al.  A Nanopower Bandpass Filter for Detection of an Acoustic Signal in a Wearable Breathing Detector , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[6]  Todd J. Freeborn,et al.  A Survey of Fractional-Order Circuit Models for Biology and Biomedicine , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[7]  Costas Psychalinos,et al.  Ultra‐low voltage fractional‐order circuits using current mirrors , 2016, Int. J. Circuit Theory Appl..

[8]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[9]  R. Caponetto,et al.  Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element , 2013 .

[10]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[11]  Costas Psychalinos,et al.  New analog implementation technique for fractional-order controller: A DC motor control , 2017 .

[12]  Karabi Biswas,et al.  Solid-state fractional capacitor using MWCNT-epoxy nanocomposite , 2017 .

[13]  Ahmed S. Elwakil,et al.  Experimental behavior evaluation of series and parallel connected constant phase elements , 2017 .

[14]  Ahmed S. Elwakil,et al.  Digitally programmed fractional-order Chebyshev filters realizations using current-mirrors , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[15]  Ahmed S. Elwakil,et al.  Experimental verification of on-chip CMOS fractional-order capacitor emulators , 2016 .

[16]  G. Ablart,et al.  Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon , 2005 .

[17]  B. Goswami,et al.  Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization , 2011, IEEE Transactions on Electron Devices.

[18]  C. Halijak,et al.  An RC Impedance Approximant to (1/s)^{1/2} , 1964 .

[19]  Khaled N. Salama,et al.  Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites , 2013 .

[20]  Bernabé Linares-Barranco,et al.  A General Translinear Principle for Subthreshold MOS Transistors , 1999 .

[21]  Ahmed S. Elwakil,et al.  A low frequency oscillator using a super-capacitor , 2016 .

[22]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[23]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Costas Psychalinos,et al.  Realization of current-mirror filters with large time-constants , 2014 .

[25]  Ahmed S. Elwakil,et al.  Electronically Tunable Fully Integrated Fractional-Order Resonator , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[27]  Jirí Vlach,et al.  RC models of a constant phase element , 2011, Int. J. Circuit Theory Appl..

[28]  Costas Psychalinos,et al.  Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies , 2017 .

[29]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[30]  Emmanuel M. Drakakis,et al.  MOS-only reduced-order ELIN cochlear channels: comparative performance evaluation , 2017, Int. J. Circuit Theory Appl..

[31]  Salvatore Graziani,et al.  An Enhanced Fractional Order Model of Ionic Polymer-Metal Composites Actuator , 2013 .

[32]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[33]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[34]  Ahmed S. Elwakil,et al.  Field programmable analogue array implementation of fractional step filters , 2010, IET Circuits Devices Syst..

[35]  Ahmed M. Soliman,et al.  Fractional Order Sallen–Key and KHN Filters: Stability and Poles Allocation , 2015, Circuits Syst. Signal Process..